C O M M U N I C A T I O N S
in subcellular distribution of ∆∆GG-modified proteins will be
presented in due course.
Acknowledgment. Bacteria containing the pGEX2T-RhoGDI
vector were a generous gift from Dr. A. Hall (University College
London). Yeast PGGTase-I expression plasmid was obtained cour-
tesy of Dr. C. D. Poulter (The University of Utah, Utah) and was
expressed by Dr. D.-Y. Suh (UUtah). This work was supported by
an award from the NIH (GM 44836), and by the Center for Cell
Signaling, a member of the Utah Centers of Excellence Program.
Supporting Information Available: Preparative procedures and
analytical data for 1, 2, and 3. Protocols for expression and purification
of PGGTase-I and RhoGDI; enzymatic, fluorescence quenching, fluor-
escence polarization assay procedures. Equations to calculate the quan-
tum yield and for fitting of fluorescence polarization data (PDF). This
Figure 1. Titration of RhoGDI (5.62 µM) with ∆∆GG-AcCysMe (O 0
µM, 9 5.62 µM, 2 16.9 µM, [ 56.2 µM), AcCysMe (b 48 µM). Inset:
Titration with GG-AcCysMe (0 16.9 µM, 2 56.2 µM).
GGPP), and the prenyl-transfer efficiency was 60% relative to that
for GGPP.
References
(1) (a) Sinensky, M. Biochim. Biophys. Acta 2000, 1484, 93-106. (b) Wagner,
To test the interaction of the ∆∆GG moiety with signaling
proteins that bind geranylgeranylated peptides, we prepared ∆∆GG-
AcCysMe 3 as a fluorescent ligand.17 This is the minimum unit
recognized by the binding domain of proteins that bind the
prenylated C-terminal Cys methyl ester. The fluorescence spectrum
of ∆∆GG-AcCysMe 3 (10 mM Tris-Cl pH 7.5) showed λex ) 360
nm and λem ) 460 nm. The 50 nm red-shift in fluorescence exci-
tation and emission further demonstrated the environmental sen-
sitivity of the ∆∆GG fluorophore in this peptide adduct relative to
the free alcohol 1. We examined the binding of ∆∆GG-AcCysMe
to the recombinant Rho GTPase dissociation inhibitor (RhoGDI).18
In cell cytosol, RhoGDI forms a complex with geranylgeranylated
Rho (GDP bound), which, in addition to slowing the rate of GDP
dissociation from the Rho, has been shown to solubilize the GTPase
from subcellular membranes.19 Therefore, RhoGDI regulates
vesicular trafficking between donor membranes to acceptor mem-
branes.
The binding of ∆∆GG-AcCysMe 3 to RhoGDI20 was determined
through the quenching of the intrinsic fluorescence of the tryptophan
residues (Trp192, Trp194, and Trp202) in a hydrophobic binding
pocket (Figure 1).21 Thus, when RhoGDI was titrated with ∆∆GG-
AcCysMe 3 or GG-AcCysMe (Figure 1, inset), but not with non-
prenylated AcCysMe, a significant reduction in fluorescence was
observed within 5 min. A red-shift (10-15 nm) of the Trp fluor-
escence indicated that water was involved in this binding interaction.
After 1 h, the fluorescence of RhoGDI had completely recovered,
further suggesting that quenching was due to dynamic changes in
the Trp microenvironments.21
To measure the binding constant of ∆∆GG-AcCysMe 3
to RhoGDI, fluorescence anisotropy was employed. Binding
of rhodamine-labeled geranylgeranyl cysteine methyl ester
(GG-RhodCysMe) to RhoGDI showed increasing polarization as
the concentration of RhoGDI in the assay buffer increased. A
dissociation constant (KD) was determined to be 2.45 ( 0.14 µM
by curve fitting, in close agreement with the reported value.18
Competitive binding was measured for ∆∆GG-AcCysMe 3, and
curve fitting gave a KD value of 15.1 ( 1.2 µM. This indicated
that the more rigid ∆∆GG fluorophore had approximately 6-fold
lower affinity compared with the geranylgeranyl moiety, equivalent
to the displacement obtained with Farn-AcCysMe.
In conclusion, the in vitro reaction of ∆∆GGPP 2 with yeast
PGGTase-I and the binding between ∆∆GG-AcCysMe 3 and
RhoGDI demonstrate the potential of the ∆∆GG moiety as a novel
fluorophore for studying the interaction and subcellular localization
of prenylated small GTPase proteins in signaling complexes. Cell-
based fluorescence assays22 to monitor the time course of changes
A.; Williams, J. Am. J. Physiol. 1994, 266, G1-14.
(2) Barbacid, M. Annu. ReV. Biochem. 1987, 56, 779-827.
(3) Liu, A. X.; Prendergast, G. C. FEBS Lett. 2000, 481, 205-208.
(4) (a) Mackay, D. J.; Hall, A. J. Biol. Chem. 1998, 273, 20685-20688. (b)
Hall, A. Science 1998, 279, 509-514 (c) Allal, C.; Favre, G.; Couderc,
B.; Salicio, S.; Sixou, S.; Hamilton, A. D.; Sebti, S. M.; Lajoie-Mazenc,
I.; Pradines, A. J. Biol. Chem. 2000, 275, 31001-31008.
(5) (a) Plutner, H.; Schwaninger, R.; Pind, S.; Balch, W. E. EMBO J. 1990,
9, 2375-2383. (b) Kalab, P.; Pu, R. T.; Dasso, M. Curr. Biol. 1999, 9,
481-484.
(6) (a) Crul, M.; deKlerk, G. D.; Beijnen, J. H.; Schellens, J. H. Anticancer
Drugs 2001, 12, 163-184. (b) Bell, I. M. Expert Opin. Therap. Patents
2000, 10, 1813-1831. (c) Adjei, A. A. Drugs Fut. 2000, 25, 1069-1079.
(7) Tsin, A. T. C.; Pedrozo-Fernandes, H. A.; Gallas, J. M.; Chambers, J. P.
Life Sci. 1988, 43, 1379-1384.
(8) (a) Gosser, Y.; Nomanbhoy, T.; Aghazadeh, B.; Manor, D.; Combs, C.;
Cerione, R.; Rosen, M. Nature 1997, 387, 814-819. (b) Hoffman, G.;
Nassar, N.; Cerione, R. Cell 2000, 100, 345-356. (c) Strickland, C. L.;
Windsor, W. T.; Syto, R.; Wang, L.; Bond, R.; Wu, Z.; Schwartz, J.; Le,
H. V.; Beese, L. S.; Weber, P. C. Biochemistry USA 1998, 37, 16601-
16611. (d) Zahn, T. J.; Eilers, M.; Guo, Z. M.; Ksebati, M. B.; Simon,
M.; Scholten, J. D.; Smith, S. O.; Gibbs, R. A. J. Am. Chem. Soc. 2000,
122, 7153-7164.
(9) (a) Marecak, D. M.; Horiuchi, Y.; Arai, H.; Shimonaga, M.; Maki, Y.;
Koyama, T.; Ogura, K.; Prestwich, G. D. Bioorg. Med. Chem. Lett. 1997,
7, 1973-1978. (b) Kale, T. A.; Raab, C.; Yu, N.; Dean, D. C.; Distefano,
M. D. J. Am. Chem. Soc. 2001, 123, 4373-4381. (c) Yokoyama, K.;
Zimmerman, K.; Scholten, J.; Gelb, M. H. J. Biol. Chem. 1997, 272,
3944-3952.
(10) Fairlamb, I. J. S.; Dickinson, J. M.; Pegg, M. Tetrahedron Lett. 2001, 42,
2205-2208.
(11) Thus, bromination of tiglic acid with NBS gave 8 (E:Z ) 2:1), and the
Michaelis-Arbuzov reaction gave two isomeric phosphonates; the proper
isomer of 9 was selectively consumed in the next step. Pattenden, G.;
Weedon, B. C. L. J. Chem. Soc. (C) 1968, 1997-2006.
(12) Liu, R.-q.; Schlosser, M. SynLett 1996, 1197-1198.
(13) Tamura, R.; Kato, M.; Saegusa, K.; Kakihana, M.; Oda, D. J. Org. Chem.
1987, 52, 4221-4124.
(14) Briefly, n-BuLi (1.2 equiv) was added into a mixture containing isoprenyl
triethyl phosphite 14 (1 equiv) in anhydrous THF at 0 °C. After 0.5 h,
the mixture was moved to -78 °C, and aldehyde 11 (0.8 equiv) was added
dropwise. Carey, F. A.; Sundberg, R. J. AdVanced Organic Chemistry,
3rd edition; Plenum Press: New York, 1990.
(15) Eaton, D. F. Pure Appl. Chem. 1988, 60, 1107-1114.
(16) Stirtan, W. G.; Poulter, C. D. Biochemistry 1997, 36, 4552-4557
(17) Xue, C.-B.; Becker, J. M.; Naider, F. Tetrahedron Lett. 1992, 33, 1435-
1438.
(18) Mondal, M. S.; Wang, Z.; Seeds, A. M.; Rando, R. R. Biochemistry 2000,
39, 406-412.
(19) (a) Sasaki, T.; Takai, Y. Biochem. Biophys. Res. Commun. 1998, 245,
641-645. (b) Koch, G.; Tanaka, K.; Masuda, T.; Yamochi, W.; Honaka,
H.; Takai, Y. Oncogene 1997, 15, 417-422.
(20) The soluble GST-RhoGDI fusion protein was expressed using modifica-
tions of the original protocol (pGEX2T-RhoGDI expression vector, E.
coli strain JM109, 25 °C, 20 h, 0.15 mM IPTG) and purified by affinity
chromatography. Hancock, J. F.; Hall, A. EMBO J. 1993, 12, 1915-1921.
(21) (a) Calls, P. R. In Methods of Enzymology; Brand, L., Johnson, M. L.,
Eds.; Academic Press: New York, 1997; Vol. 278, pp 113-150. (b)
Eftink, M. R. In Methods of Enzymology; Brand, L., Johnson, M. L., Eds.;
Academic Press: New York, 1997; Vol. 278, pp 221-257. (c) Chen, Y.;
Barkley, M. D. Biochemistry 1998, 37, 9976-9982.
(22) (a) Choy, E.; Chiu, V.; Silletti, J.; Feoktistov, M.; Morimoto, T.;
Michaelson, D.; Ivanov, I.; Philips, M. Cell 1999, 98, 69-80. (b) Kraynov,
V. S.; Chamberlain, C.; Bokoch, G. M.; Schwartz, M. A.; Slabaugh, S.;
Hahn, K. M. Science 2000, 290, 333-337.
JA0119144
9
J. AM. CHEM. SOC. VOL. 124, NO. 1, 2002 21