Journal of the American Chemical Society
COMMUNICATION
reaction was observed under the standard reaction conditions (5
mol % catalyst and 0.1 M diyne at 60 °C in toluene). However, a
carbocyclic product was generated when the temperature was
elevated to 80 °C. Although a relatively low yield (38%) was
obtained, excellent enantioselectivity (99%) was observed (eq 3).
A higher yield was obtained when the reaction temperature
was increased to 100 °C. Gratifyingly, only a slight decrease
in enantioselectivity was observed at a higher temperature
(100 °C).
In conclusion, we have successfully incorporated ketenes in
[2 þ 2þ2] cycloaddition reactions with diynes. Decarbonylation
of the ketene starting materials was not observed. Instead, a
variety of 2,4-cyclohexadienones were formed. An enantiopure
cyclohexadienone product was obtained when (R)-BINAP was
used as the ligand. Efforts to develop a general asymmetric
catalyst system and understand the mechanistic details of this
cycloaddition chemistry are underway.
(5) For various metalꢀketene complexes, see: Ni: (a) Hoberg, H.;
Korff, J. J. Organomet. Chem. 1978, 152, 255. (b) Sugai, R.; Miyashita, A.;
Nohira, H. Chem. Lett. 1988, 17, 1403. (c) Miyashita, A.; Grubbs, R. H.
TetrahedronLett. 1981, 22, 1255. (d) Miyashita, A.; Shitara, H.; Nohira, H.
J. Chem. Soc., Chem. Commun. 1985, 850. Pt:(e) Schorpp, K.; Beck, W. Z.
Naturforsch. 1973, 28B, 738. (f) Miyashita, A.; Shitara, H.; Nohira, H.
Organometallics 1985, 4, 1463. Ti, Zr:(g) Straus, D. A.; Grubbs, R. H. J.
Am. Chem. Soc. 1982, 104, 5499. Ir:(h) Lo, H. C.; Grotjahn, D. B. J. Am.
Chem. Soc. 1997, 119, 2958. (i) Grotjahn, D. B.; Bikzhanova, G. A.;
Collins, L. S. B.; Concolino, T.; Lam, K.-C; Rheingold, A. L. J. Am. Chem.
Soc. 2000, 122, 5222. (j) Grotjahn, D. B.; Collins, L. S. B.; Wolpert, M.;
Bikzhanova, G. A.; Lo, H. C.; Combs, D.; Hubbard, J. L. J. Am. Chem. Soc.
2001, 123, 8260. (k) Grotjahn, D. B.; Hoerter, J. M.; Hubbard, J. L. J. Am.
Chem. Soc. 2004, 126, 8866. Rh:(l) Grotjahn, D. B.; Hoerter, J. M.;
Hubbard, J. L. Organometallics 1999, 18, 5614. (m) Werner, H.; Bleuel, E.
Angew. Chem., Int. Ed. 2001, 40, 145.
(6) For decarbonylation of ketene complexes, see: (a) Hofman, P.;
Perez-Moya, L. A.; Steigelman, O.; Riede, J. Organometallics 1992,
11, 1167. Co:(b) Young, D. A. Inorg. Chem. 1973, 12, 482. (c) Hong,
P.; Sonogashira, K.; Hagihara, N. Tetrahedron Lett. 1971, 12, 1105. Pd:
(d) Mitsudo, T.; Kadokura, M.; Watanabe, Y. J. Org. Chem. 1987,
52, 1695. (e) Mitsudo, T.; Kadokura, M.; Watanabe, Y. J. Org. Chem.
1987, 52, 3186. (f) Mitsudo, T.; Kadokura, M.; Watanabe, Y. Tetra-
hedron Lett. 1985, 26, 3697. (g) Goll, J. M.; Fillion, E. Organometallics
2008, 27, 3622. Fe:(h) Mills, O. S.; Redhouse, A. D. J. Chem. Soc., Chem.
Commun. 1966, 444. Os:(i) Arce, A. J.; Deeming, A. J. J. Chem. Soc.,
Chem. Commun. 1982, 364. Pt:(j) Miyashita, A.; Shitara, H.; Nohira, H.
Organometallics 1985, 4, 1463. Rh:(k) Hong, P.; Nishii, N.; Sonogashira,
K.; Hagihara, N. J. Chem. Soc., Chem. Commun. 1972, 993. (l) Kondo, T.;
Tokoro, Y.; Ura, Y.; Wada, K.; Mitsudo, T. ChemCatChem 2009, 1, 82.
Ir:(m) Grotjahn, D. B.; Bikzhanova, G. A.; Collins, L. S. B.; Concolino,
T.; Lam, K.-C.; Rheingold, A. L. J. Am. Chem. Soc. 2000, 122, 5222. (n)
Urtel, H.; Bikzhanova, G. A.; Grotjahn, D. B.; Hofmann, P. Organome-
tallics 2001, 20, 3938 .
’ ASSOCIATED CONTENT
S
Supporting Information. Detailed experimental proce-
b
dures and compound characterization data. This material is
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We gratefully acknowledge the DOE, the NSF, and the
NIGMS (5R01GM076125) for support of this research. R.C.
thanks CNPq-Brasil (#201732/2008-4) for a postdoctoral fel-
lowship. We thank Professor Sigman at the University of Utah for
the use of a chiral GC instrument.
(7) Tidwell, T. T. In Ketenes; Wiley-Interscience: New York, 1995.
(8) For a complementary approach to cyclohexadienones and
phenols, see: (a) Tang, P. C.; Wulff, W. D. J. Am. Chem. Soc. 1984,
106, 1132. (b) Ming-Yuan, L.; Madhushaw, R. J.; Liu, R.-S. J. Org. Chem.
2004, 69, 7700.
(9) For natural products containing
a 2,4-cyclohexadienone
core, see: (a) Kaouadji, M. J. Nat. Prod. 1986, 49, 500. (b) Kuo, Y.; Li,
S.; Huang, R.; Wu, M.; Huang, H.; Lee, K. J. Nat. Prod. 2001, 64, 487. (c)
Shen, Y.; Cheng, Y.; Liaw, C.; Liou, S.; Khalil, A. J. Nat. Prod. 2007,
70, 1139. (d) Quideau, S.; Pouysegu, L.; Deffieux, D. Synlett 2008, 467.
(10) When DPPF was employed as the ligand in the cycloaddition of
other substrates, such as diynes 5 and 7 with a, a complex mixture of
products that included diyne dimer, ketene dimer, and cycloadduct was
formed, hampering purification. In general, reactions run with DPPB
were cleaner. Therefore, our optimized conditions employed DPPB as
the ligand of choice.
(11) Wender, P. A.; Christy, J. P. J. Am. Chem. Soc. 2007, 129, 13402.
(12) (a) Larson, G. L.; Hernandez, D.; Lopez-Cepreo, I. M. D.;
Torres, L. E. J. Org. Chem. 1985, 50, 5267. (b) Matsuda, I.; Sato, S.;
Hattori, M.; Izumi, Y. Tetrahedron Lett. 1985, 26, 3215.
(13) When 3-hexyne and phenyl ethyl ketene (a) were subjected to
the optimized conditions, the cycloaddition product was not obtained.
Instead, only ketene dimerization was observed by GC.
’ REFERENCES
(1) (a) Leb!uf, D.; Gandon, V.; Malacria, M. In Handbook of
Cyclization Reactions; Ma, S., Ed.; Wiley-VCH: Weinheim, Germany,
2009; Vol. 1, pp 367ꢀ406. (b) Lautens, M.; Klute, W.; Tam, W. Chem.
Rev. 1996, 96, 49. (c) Chopade, P.; Louie, J. Adv. Synth. Catal. 2006,
348, 2307. (d) Louie, J. Curr. Org. Chem. 2005, 9, 605.(e) Domínguez,
G.; Pꢀerez-Castells, J. Chem. Soc. Rev. [Online early access]. DOI:
10.1039/C1CS15029D. Published Online: March 23, 2011.
(2) (a) Sato, Y.; Nishimata, T.; Mori, M. J. Org. Chem. 1994,
59, 6133. (b) Ikeda, S.; Watanabe, H.; Sato, Y. J. Org. Chem. 1998,
63, 702. (c) Wender, P. A.; Jenkins, T. E. J. Am. Chem. Soc. 1989,
111, 6432. (d) Ni, Y.; Montgomery, J. J. Am. Chem. Soc. 2004,
126, 11162. (e) Louie, J.; Gibby, J. E.; Farnworth, M. V.; Tekavec,
T. N. J. Am. Chem. Soc. 2002, 124, 15188. (f) McCormick, M. M.;
Duong, H. A.; Zuo, G; Louie, J. J. Am. Chem. Soc. 2005, 127, 5030. (g)
Duong, H. A.; Cross, M. J.; Louie, J. J. Am. Chem. Soc. 2004, 126, 11438.
(h) Tanaka, K.; Wada, A.; Noguchii, K. Org. Lett. 2005, 7, 4737. (i)
Oberg, K. M.; Lee, E. E.; Rovis, T. Tetrahedron 2009, 65, 5056. (j)
Tekavec, T. N.; Louie, J. Org. Lett. 2005, 7, 4037. (k) Tekavec, T. N.;
Louie, J. J. Org. Chem. 2008, 73, 2641.
(14) (a) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998,
37, 391.(b) Challenges and Solutions for Organic Synthesis; Christoffers, J.,
Ed.; Wiley-VCH: Weinheim, Germany, 2005. (c) Douglas, C. J.; Over-
man, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363.
(3) Ketenes were coupled with alkynes using a Rh catalyst. However,
products arising from a β-hydride elimination step were obtained. See:
Kondo, T.; Niimi, M.; Yoshida, Y.; Wada, K.; Mitsudo, T.; Kimura, Y.;
Toshimitsu, A. Molecules 2010, 15, 4189.
(4) For an excellent review of the interactions of ketenes with various
metals, see: Geoffery, G. L.; Bassner, S. L. Adv. Organomet. Chem. 1988,
28, 1.
7721
dx.doi.org/10.1021/ja2007627 |J. Am. Chem. Soc. 2011, 133, 7719–7721