Journal of the American Chemical Society
Communication
(12) Mo-catalyzed DODH: (a) Sandbrink, L.; Beckerle, K.; Meiners, I.;
Liffmann, R.; Rahimi, K.; Okuda, J.; Palkovits, R. ChemSusChem 2017,
10, 1375. (b) Dethlefsen, J. R.; Lupp, D.; Teshome, A.; Nielsen, L. B.;
Fristrup, P. ACS Catal. 2015, 5, 3638. (c) Hills, L.; Moyano, R.; Montilla,
ACKNOWLEDGMENTS
■
This work was financially supported by BASF Corporation
(Award Number 53093) and the NSF through the Center for
Sustainable Polymers (CHE-1413862). The authors thank Dr.
Selim Alayoglu for assistance with SEM/EDS measurements.
SEM/EDS work at the Molecular Foundry was supported by the
Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231.
́
F.; Pastor, A.; Galindo, A.; Alvarez, E.; Marchetti, F.; Pettinari, C. Eur. J.
Inorg. Chem. 2013, 2013, 3352−3361. V-catalyzed DODH:
(d) Gopaladasu, T. V.; Nicholas, K. M. ACS Catal. 2016, 6, 1901.
(e) Nicholas, K. M.; Chapman, G., Jr Chem. Commun. 2013, 49, 8199.
(13) (a) Shiramizu, M.; Toste, F. D. Angew. Chem., Int. Ed. 2013, 52
(49), 12905. See also: (b) Li, X.; Wu, D.; Lu, T.; Yi, G.; Su, H.; Zhang, Y.
Angew. Chem., Int. Ed. 2014, 53, 4200.
(14) (a) Gopaladasu, T. V.; Nicholas, K. M. ACS Catal. 2016, 6, 1901.
(b) Ziegler, J. E.; Zdilla, M. J.; Evans, A. J.; Abu-Omar, M. M. Inorg.
Chem. 2009, 48, 9998.
REFERENCES
■
(1) (a) Shanks, B. H.; Keeling, P. L. Green Chem. 2017, 19, 3177.
(b) Sheldon, R. A. J. Mol. Catal. A: Chem. 2016, 422, 3. (c) Wu, L.;
Moteki, T.; Gokhale, A. A.; Flaherty, D. W.; Toste, F. D. Chem. 2016, 1,
32. (d) Deneyer, A.; Renders, T.; Van Aelst, J.; Van den Bosch, S.;
(15) A heterogeneous Re/Pd system gave excellent yields in the
DODH of simple diols, but only modest yields in the DODH of sugar
alcohols, see: (a) Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.;
Tomishige, K. Angew. Chem., Int. Ed. 2015, 54, 1897. (b) Ota, N.;
Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal.
2016, 6, 3213. (c) Tazawa, S.; Ota, N.; Tamura, M.; Nakagawa, Y.;
Okumura, K.; Tomishige, K. ACS Catal. 2016, 6, 6393. For an
additional example of H2/Pd/Re reduction with perchlorate anion as the
substrate, see: Hurley, K. D.; Shapley, J. R. Environ. Sci. Technol. 2007,
41, 2044. For a related example of polyol reduction using Re/Ir rather
than Re/Pd, see Tomishige, K.; Nakagawa, Y.; Tamura, M. Selective
Hydrogenolysis of C-O bonds Using the Interaction of the Catalyst
Surface and OH groups. In Selective Catalysis for Renewable Feedstocks
and Chemicals; Nicholas, K. M., Ed.; Topics in Current Chemistry Series
353; Springer International Publishing: Switzerland, 2014; pp 127−162.
(16) Previously reported DODH systems utilize solvents such as
benzenes, dioxane, or long chain alcohols, which tended to lead to
undesired condensation of 1 to 2, effectively eliminating the vicinal diol
functionality.
(17) The ratio of 1,4 vs 6,3 lactone is equal in the absence of catalysts in
both EtOH and MeOH. The isolation of 1 and 6 appears to result from a
dynamic crystallization process wherein 1 selectively crystallizes from
the mother liquor in EtOH, while the remaining soluble glucarate re-
equilibrates as 1 precipitates. The same holds true for 6 in MeOH. For
previous isolation of these lactones, see: Kiely, D. E.; Chen, L.; Lin, T. H.
J. Am. Chem. Soc. 1994, 116, 571.
(18) For DFT studies on the mechanism of: Recatalyzed DODH see:
(a) Gable, K. P.; Zhuravlev, F. A. J. Am. Chem. Soc. 2002, 124, 3970.
(b) Qu, S.; Dang, Y.; Wen, M.; Wang, Z.-W. Chem. - Eur. J. 2013, 19,
3827. (c) Dethlefsen, J. R.; Fristrup, P. ChemCatChem 2015, 7, 1184.
(d) Wu, D.; Zhang, Y.; Su, H. Chem. - Asian J. 2016, 11, 1565. (e) V-
catalyzed DODH: Galindo, A. Inorg. Chem. 2016, 55, 2284.
(19) Korstanje, T. J.; Jastrzebski, J. T. B. H.; Gebbink, R. J. M. K. Chem.
- Eur. J. 2013, 19, 13224.
Gabriels, D.; Sels, B. F. Curr. Opin. Chem. Biol. 2015, 29, 40. (e) Tuck, C.
̈
́ ́
O.; Perez, E.; Horvath, I. T.; Sheldon, R.; Poliakoff, M. Science 2012, 337,
695.
(2) (a) Thakur, D. S.; Kundu, A. J. Am. Oil Chem. Soc. 2016, 93, 1575.
(b) Marshall, A.-L.; Alaimo, P. J. Chem. - Eur. J. 2010, 16, 4970. (c) Behr,
A.; Westfechtel, A.; Gomes, J. P. Chem. Eng. Technol. 2008, 31, 700.
(d) Wittcoff, H. A.; Reuben, B. G.; Plotkin, J. S. In Industrial Organic
Chemicals; John Wiley & Sons, Inc.: Hoboken, NJ, 2012; pp 493−521.
(3) (a) Dusselier, M.; Mascal, M.; Sels, B. F. Top. Curr. Chem. 2014,
353, 1. (b) Tong, X.; Ma, Y.; Li, Y. Appl. Catal., A 2010, 385, 1.
(4) (a) Kruyer, N. S.; Peralta-Yahya, P. Curr. Opin. Biotechnol. 2017, 45,
136. (b) Bart, J. C. J.; Cavallaro, S. Ind. Eng. Chem. Res. 2015, 54, 567.
(c) Van de Vyver, S.; Roman-Leshkov, Y. Catal. Sci. Technol. 2013, 3,
1465.
(5) (a) Bart, J. C. J.; Cavallaro, S. Ind. Eng. Chem. Res. 2015, 54, 1.
(b) Hermans, I.; Jacobs, P. A.; Peeters, J. Chem. - Eur. J. 2006, 12, 4229.
(c) Lichtenthaler, F. W. In Ullmann’s Encyclopedia of Industrial
Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2000.
(d) Musser, M. T. In Ullmann’s Encyclopedia of Industrial Chemistry;
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2000.
(6) (a) Thiemens, M. H.; Trogler, W. C. Science 1991, 251 (4996), 932.
(b) Reimer, R. A.; Slaten, C. S.; Seapan, M.; Lower, M. W.; Tomlinson,
P. E. Environ. Prog. 1994, 13, 134.
(7) (a) Llevot, A.; Dannecker, P.-K.; von Czapiewski, M.; Over, L. C.;
Soyler, Z.; Meier, M. A. R. Chem. - Eur. J. 2016, 22, 11510. (b) Harmsen,
̈
P. F. H.; Hackmann, M. M.; Bos, H. L. Biofuels, Bioprod. Biorefin. 2014, 8,
306.
(8) Draths, K. M.; Frost, J. W. J. Am. Chem. Soc. 1994, 116, 399.
(9) Boussie, T. R.; Dias, E. L.; Fresco, Z. M.; Murphy, V. J.; Shoemaker,
J.; Archer, R.; Jiang, H. US8669397B2, March 11, 2014.
(20) (a) Krebs, A.; Bolm, C. Synlett 2011, 2011, 671. (b) Marrodan, C.
M.; Berti, D.; Liguori, F.; Barbaro, P. Catal. Sci. Technol. 2012, 2, 2279.
(c) Hattori, K.; Sajiki, H.; Hirota, K. Tetrahedron 2001, 57, 4817.
(21) Additionally, α,β-dideuterated substrates showed washing out of
deuterium at the β position but not the α position. Since formation of
either of these intermediates should result in deuterium exchange at the
α-position (by direct reduction of that position for the α-ketoester and
by facile enolization of the β-ketoester), this observation further
supports the idea that ketoester intermediates are not involved in
product formation (see SI for details).
(22) Theoretical studies have shown the exact nature of the transition
state for deoxydehydration and dihydroxylation can vary significantly
depending on the ligand set of the catalytic species. As such, any insight
into the specifics of the relevant transition state is challenging to derive
from analogy to known catalytic systems. For experimental demon-
stration of an asynchronous transition state in the [3+2] cycloreversion,
see 18a. For a theoretical analysis of the favored dihydroxylation/
deoxydehydration transition states for various simple rhenium
complexes, see: Deubel, D. V.; Frenking, G. J. Am. Chem. Soc. 1999,
121, 2021.
(10) For a general reviews of deoxygenation of biomass, see:
(a) Rogers, K. A.; Zheng, Y. ChemSusChem 2016, 9, 1750. (b) Raju,
S.; Moret, M.-E.; Gebbinik, R. J. M. K. ACS Catal. 2015, 5, 281.
(c) Boucher-Jacobs, C.; Nicholas, K. M. Top. Curr. Chem. 2014, 353,
163.
(11) (a) Cook, G. K.; Andrews, M. A. J. Am. Chem. Soc. 1996, 118,
9448. (b) Vkuturi, S.; Chapman, G.; Ahmad, I.; Nicholas, K. M. Inorg.
Chem. 2010, 49, 4744. (c) Arceo, E.; Ellman, J. A.; Bergman, R. G. J. Am.
Chem. Soc. 2010, 132, 11408. (d) Shiramizu, M.; Toste, F. D. Angew.
Chem., Int. Ed. 2012, 51, 8082. (e) Yi, J.; Liu, S.; Abu-Omar, M. M.
ChemSusChem 2012, 5, 1401. (f) Liu, P.; Nicholas, K. M. Organo-
metallics 2013, 32, 1821. (g) Raju, S.; Jastrzebski, J. T. B. H.; Lutz, M.;
Gebbink, R. J. M. K. ChemSusChem 2013, 6, 1673. (h) Denning, A. L.;
Dang, H.; Liu, Z.; Nicholas, K. M.; Jentoft, F. C. ChemCatChem 2013, 5,
3567. (i) Boucher-Jacobs, C.; Nicholas, K. M. ChemSusChem 2013, 6,
597. (j) Dethlefsen, J. R.; Fristrup, P. ChemSusChem 2015, 8, 767.
(k) Sandbrink, L.; Klindtworth, E.; Islam, H.-U.; Beale, A. M.; Palkovits,
R. ACS Catal. 2016, 6, 677. (l) Raju, S.; van Slagmaat, C. A. M. R.; Li, J.;
Lutz, M.; Jastrzebski, J. T. B. H.; Moret, M.-E.; Gebbink, R. J. M. K.
Organometallics 2016, 35, 2178. (m) Shin, N.; Kwon, S.; Moon, S.;
Hong, C. H.; Kim, Y. G. Tetrahedron 2017, 73, 4758.
(23) Li, X.; Zhang, Y. ChemSusChem 2016, 9, 2774.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX