Journal of the American Chemical Society
COMMUNICATION
We thank Dr. Stephen M. Spain for assistance with mass
spectrometry.
’ REFERENCES
(1) (a) Lohse, A. G.; Hsung, R. P. Chem.—Eur. J. 2011, 17, 3812–
3822. (b) Harmata, M. Chem. Commun. 2010, 8904–8922. (c) Harmata,
M. Chem. Commun. 2010, 8886–8903. (d) Huan, J.; Hsung, R. P.
Chemtracts 2005, 18, 207–214. (e) Harmata, M. Adv. Synth. Catal.
2006, 2297–2306. (f) Harmata, M. Acc. Chem. Res. 2001, 34, 595–605.
(g) Cha, J. K.; Oh, J. Curr. Org. Chem. 1998, 2, 217–232.(h) Harmata, M.
In Advances in Cycloaddition; Lautens, M., Ed.; JAI: Grennwich, 1997;
Vol. 4, pp 41ꢀ86. (i) West, F. G. In Advances in Cycloaddition; Lautens,
M., Ed.; JAI: Grennwich, CT, 1997; Vol. 4, pp 1ꢀ40. (j) Harmata, M.
Tetrahedron 1997, 53, 6235–6280.(k) Padwa, A.; Schoffstall, A. In
Advances in Cycloaddition; Curran, D. P., Ed.; JAI Press: Greenwich,
CT, 1990; Vol. 2, pp 1ꢀ89. (l) Harmata, M. Recent Res. Dev. Org. Chem.
1997, 1, 523–535. (m) Rigby, J. H.; Pigge, F. C. Org. React. 1997,
51, 351–478. (n) Mann, J. Tetrahedron 1986, 42, 4611–4659.
(o) Hoffmann, H. M. R. Angew. Chem., Int. Ed. Engl. 1984, 23, 1–19.
(p) Hoffmann, H. M. R. Angew. Chem., Int. Ed. Engl. 1973, 12, 819–835.
(2) For reviews on the reactivity and synthesis of R-lactams, see:
(a) Lengyel, I.; Sheehan, J. C. Angew. Chem., Int. Ed. Engl. 1968, 7, 25–36.
(b) L’Abbe, G. Angew. Chem., Int. Ed. Engl. 1980, 19, 276–289.
(3) Stang, P. J.; Anderson, G. H. Gazz. Chim. Ital. 1995, 125,
329–331.
Figure 2. Relaxed potential energy scans along the C(3)ꢀN(1) co-
ordinate of R-lactams 14 and 15 (10ꢀ13 steps at 0.1 Å intervals) at a
B3LYP/6-31G* level of theory. Green line/O = 14 in methanol, red
line/9 = 15 in methanol; dashed-line/ꢁ = 15 in the gas phase.
Stationary points are indicated by [.
(4) Cohen, A. D.; Showalter, B. M.; Toscano, J. P. Org. Lett. 2004,
6, 401–403.
(5) Kikugawa, Y.; Shimada, M.; Kato, M.; Sakamoto, T. Chem.
Pharm. Bull. 1993, 41, 2192–2194.
(6) Tantillo, D. J.; Houk, K. N.; Hoffman, R. V.; Tao, J. J. Org. Chem.
Scheme 1. Proposed Mechanism for the Aza-[4 þ 3] Cy-
cloaddition Reaction with Furan (X = O) and Cyclopenta-
diene (X = CH2)
1999, 64, 3830–3837.
(7) For a review of the stereochemical studies of the nucleophilic
ring opening of R-lactams, see: Hoffman, R. V. In The Amide Linkage:
Selected Structural Aspects in Chemistry Biochemistry and Material Science;
Greenberg, A., Breneman, C. M., Liebman, J. F., Eds.; John Wiley & Sons
Inc.: New York, 2000; p 137.
(8) Lengyel, I.; Mark, R. V. Acta Chim. Acad. Sci. Hung. 1974,
81, 475–479.
(9) For examples of [4 þ 3] cycloaddition reactions of nitrogen-
stabilized oxyallylic cations, see: (a) Antoline, J. E.; Hsung, R. P. Synlett
2008, 739–744. (b) Antoline, J. E.; Hsung, R. P.; Huang, J.; Song, Z.; Li,
G. Org. Lett. 2007, 9, 1275–1278. (c) MaGee, D. I.; Godineau, E.;
Thornton, P. D.; Walters, M. A.; Sponholtz, D. J. Eur. J. Org. Chem.
2006, 3667–3680. (d) Huang, J.; Hsung, R. P. J. Am. Chem. Soc. 2005,
127, 50–51. (e) Rameshkumar, C.; Hsung, R. P. Angew. Chem., Int. Ed.
2004, 43, 615–618. (f) Xiong, H.; Huang, J.; Ghosh, S. K.; Hsung, R. P.
J. Am. Chem. Soc. 2003, 125, 12694–12695. (g) Harmata, M.; Ghosh,
S. K.; Hong, X.; Wacharasindhu, S.; Kirchhoefer, P. J. Am. Chem. Soc.
2003, 125, 2058–2059. (h) Xiong, H.; Hsung, R. P.; Berry, C. R.;
Rameshkumar, C. J. Am. Chem. Soc. 2001, 123, 7174–7175. (i) Walters,
M. A.; Arcand, H. R. J. Org. Chem. 1996, 61, 1478–1486.
(10) For recent examples of cycloaddition reactions of oxygen-
stabilized oxyallylic cations, see: (a) Harmata, M.; Huang, C. Tetrahedron
Lett. 2009, 50, 5701–5703. (b) Armstrong, A.; Dominguez-Fernandez, B.;
Tsuchiya, T. Tetrahedron 2006, 62, 6614–6620. (c) Aungst, R. A., Jr.;
Funk, R. L. Org. Lett. 2001, 3, 3553–3555. (d) Stark, C. B. W.; Pierau,
S.; Wartchow, R.; Hoffmann, H. M. R. Chem.—Eur. J. 2000,
6, 684–691. (e) Misske, A. M.; Hoffmann, H. M. R. Chem.—Eur. J.
2000, 6, 3313–3320. (f) Lee, J. C.; Cha, J. K. Tetrahedron 2000,
56, 10175–10184. (g) Harmata, M.; Sharma, U. Org. Lett. 2000,
2, 2703–2705.(h) Harmata, M.; Rashatasakhon, P. Synlett 2000,
1419–1422 and references cited within.
on the detailed mechanistic aspects, the synthetic scope, and the
applications of this reaction are underway.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures, tabu-
b
lated characterization data, complete ref 19, tabulated computational
data, and copies of 1H and 13CNMR spectra for all new compounds
are provided in the Supporting Information. This material is
’ AUTHOR INFORMATION
Corresponding Author
(11) For examples of cycloaddition reactions of sulfur-stabilized
oxyallylic cations, see: (a) Harmata, M.; Kahraman, M.; Adenu, G.;
Barnes, C. L. Heterocycles 2004, 62, 583–618. (b) Masuya, K.; Domon,
K.; Tanino, K.; Kuwajima, I. J. Am. Chem. Soc. 1998, 120, 1724.
(c) Harmata, M.; Carter, K. W. ARKIVOC 2002, 62–70. (d) Harmata,
’ ACKNOWLEDGMENT
Startup funding for this work was provided by the University
of Nevada, Reno. We thank Prof. Thomas Bell for chemicals and
Profs. Benjamin King and Robert Sheridan for helpful discussions.
7690
dx.doi.org/10.1021/ja201901d |J. Am. Chem. Soc. 2011, 133, 7688–7691