LETTER
Sulfonamide-Catalyzed Aldol Reaction
413
Table 2 Direct Asymmetric Aldol Reactions Using Organocatalyst 2 (continued)
Ph
TFA
(0.05 equiv)
O
O
OH
TfHN
NH2
ketone
(10 equiv)
H
2 (0.2 equiv)
R
R
brine, r.t.
6
8
Entry
10
Product
Time (h)
Yield (%)a
71
anti/synb
ee (%)c
89
OH
O
124
80:20
NO2
8j
O
OH
11e,f
120
18
–
70
NO2
8k
a 1H NMR yields.
b Determined by 1H NMR spectroscopic analysis.
c Determined by HPLC analysis.
d Catalyst (0.1 equiv) and TFA (0.025 equiv) were used.
e The reaction was carried out at 0 °C.
f The reaction was carried out with 30 equiv of acetone in brine.
We infer that the b-aminosulfonamide 2 catalyzed direct References and Notes
aldol reactions between aldehydes and ketones proceed
(1) For selected reviews on organocatalysis, see: (a) Dalko,
P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 5138.
(b) Pellissier, H. Tetrahedron 2007, 63, 9267.
via a transition state proposed by Córdova’s group,9 based
on the stereochemistry of the aldol products 8 (Figure 1).
We believe it is reasonable to assume that the sulfonamide
proton of 2 coordinates to the oxygen of the aldehyde to
control the direction of approach of the aldehyde to the
enamine intermediate. The addition of TFA to the aldol
reaction accelerates the formation of the enamine interme-
diate.10
(c) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem.
Rev. 2007, 107, 5471. (d) Dondoni, A.; Massi, A. Angew.
Chem. Int. Ed. 2008, 47, 4638. (e) Lattanzi, A. Chem.
Commun. 2009, 1452. (f) Liu, X.; Lin, L.; Feng, X. Chem.
Commun. 2009, 6145.
(2) Modern Aldol Reactions, Vol. 1 and 2; Mahrwald, R., Ed.;
Wiley-VCH: Weinheim, 2004.
(3) For selected reviews on organocatalysis in water, see:
(a) Gruttadauria, M.; Giacalone, F.; Noto, R. Adv. Synth.
Catal. 2009, 351, 33. (b) Paradowska, J.; Stodulski, M.;
Mlynarski, J. Angew. Chem. Int. Ed. 2009, 48, 4288.
(c) Raj, M.; Singh, K. Chem. Commun. 2009, 6687. For
selected recent examples of organocatalyzed aldol reactions
in water, see: (d) An, Y.-J.; Zhang, Y.-X.; Wu, Y.; Liu,
Z.-M.; Pi, C.; Tao, J.-C. Tetrahedron: Asymmetry 2010, 21,
688. (e) Zhang, S.-P.; Fu, X.-K.; Fu, S.-D. Tetrahedron Lett.
2009, 50, 1173. (f) Zhou, H.; Xie, Y.; Ren, L.; Wang, K.
Adv. Synth. Catal. 2009, 351, 1284. (g) Ma, X.; Da C, S.;
Yi, L.; Jia, Y.-N.; Guo, Q.-P.; Che, L.-P.; Wu, F.-C.; Wang,
J.-R.; Li, W.-P. Tetrahedron: Asymmetry 2009, 20, 1419.
(h) Chimni, S. S.; Singh, S.; Kumar, A. Tetrahedron:
Asymmetry 2009, 20, 1722. (i) Fu, S.-D.; Fu, X.-K.; Zhang,
S.-P.; Zou, X.-C.; Wu, X.-J. Tetrahedron: Asymmetry 2009,
20, 2390. (j) Vishnumaya, M. R.; Singh, V. K. J. Org. Chem.
2009, 74, 4289. (k) Nisco, M. D.; Pedatella, S.; Ullah, H.;
Zaidi, J. H.; Naviglio, D.; Ozdamar, O.; Caputo, R. J. Org.
Chem. 2009, 74, 9562. (l) Vishnumaya, M. R.; Singh, V. K.
J. Org. Chem. 2009, 74, 4289. (m) Mase, N.; Noshiro, N.;
Mokuya, A.; Takabe, K. Adv. Synth. Catal. 2009, 351, 2791.
(n) Tea, Y.-C.; Lee, P. P. Synth. Commun. 2009, 39, 3081.
(o) Jia, Y.-N.; Wu, F.-C.; Ma, X.; Zhu, G.-J.; Da C, S.
Tetrahedron Lett. 2009, 50, 3059. (p) Ramasastry, S. S. V.;
In conclusion, the simple sulfonamide 2, with only one
chiral center, works efficiently as a catalyst in the direct
aldol reaction of various aldehydes with ketones in brine11
to give the corresponding anti-aldol products 8 with high
enantioselectivities. The stereochemistry of anti-aldol
products 8, obtained by using organocatalyst 2, had the
opposite absolute configuration to those obtained by using
the original catalyst 1.5 Thus, both enantiomeric anti-aldol
products can be synthesized by applying organocatalysts
2 and 1, which are easily prepared from L-phenylalanine,
a commercially available, inexpensive natural amino acid.
Further application to the synthesis of bioactive com-
pounds is in progress in our laboratory.
Acknowledgment
This work was supported in part by Grants-in-Aid for Scientific Re-
search (C) (No. 22590007) from the Japan Society for the Promoti-
on of Science and the Suzuken Memorial Foundation.
Synlett 2011, No. 3, 410–414 © Thieme Stuttgart · New York