Journal of the American Chemical Society
ARTICLE
5. CONCLUSIONS
(10) Traub, M. C.; Brunschwig, B. S.; Lewis, N. S. J. Phys. Chem. B
2007, 111, 6676.
Molecular conductance and heterogeneous rate constants
were evaluated for three molecular systems. Qualitatively, it
was observed that fast electron transfer rate constants correspond
to rather high conductances. Conductance variation with the
potential suggests that superexchange, not electron hopping, is
the predominate mechanism for the investigated molecules. The
almost fully conjugated ferrocenebisthiol 3 even displayed a
complete independence of conductance on potential when
constructing histograms from Iꢀd curves. However, slight flips
of conductance ascribable to conformational changes were obser-
ved when the tip movement was stopped after establishing an
otherwise stable molecular junction. Tentative evaluations of
electronic coupling revealed that, except for compound 3, this
parameter is surprisingly higher for steady-state conductance
measurements than for transient electron transfer albeit the
charge had to travel over a larger distance in the former case.
This emphasizes that information derived from molecular struc-
tures should be evaluated through various experimental and
theoretical approaches to elucidate intrinsic molecular complexity.
(11) Yeganeh, S.; Galperin, M.; Ratner, M. A. J. Am. Chem. Soc. 2007,
129, 13313.
(12) Galperin, M.; Ratner, M. A.; Nitzan, A. Nano Lett. 2005, 5, 125.
(13) Albrecht, T.; Guckian, A.; Ulstrup, J.; Vos, J. G. Nano Lett. 2005,
5, 1451.
(14) Diez-Perez, I.; Hihath, J.; Lee, Y.; Yu, L. P.; Adamska, L.;
Kozhushner, M. A.; Oleynik, I. I.; Tao, N. J. Nat. Chem. 2009, 1, 635.
(15) Gittins, D. I.; Bethell, D.; Schiffrin, D. J.; Nichols, R. J. Nature
2000, 408, 67.
(16) Xu, B. Q.; Xiao, X. Y.; Yang, X. M.; Zang, L.; Tao, N. J. J. Am.
Chem. Soc. 2005, 127, 2386.
(17) Galperin, M.; Ratner, M. A.; Nitzan, A.; Troisi, A. Science 2008,
319, 1056.
(18) Zhang, J. D.; Kuznetsov, A. M.; Medvedev, I. G.; Chi, Q. J.;
Albrecht, T.; Jensen, P. S.; Ulstrup, J. Chem. Rev. 2008, 108, 2737.
(19) Zhou, X. S.; Chen, Z. B.; Liu, S. H.; Jin, S.; Liu, L.; Zhang, H. M.;
Xie, Z. X.; Jiang, Y. B.; Mao, B. W. J. Phys. Chem. C 2008, 112, 3935.
(20) Li, Z. H.; Liu, Y. Q.; Mertens, S. F. L.; Pobelov, I. V.;
Wandlowski, T. J. Am. Chem. Soc. 2010, 132, 8187.
(21) Amatore, C.; Maisonhaute, E. Anal. Chem. 2005, 77, 303A.
(22) Amatore, C.; Maisonhaute, E.; Simonneau, G. Electrochem.
Commun. 2000, 2, 81.
(23) Amatore, C.; Maisonhaute, E.; Simonneau, G. J. Electroanal.
Chem. 2000, 486, 141.
(24) Xiao, X. Y.; Brune, D.; He, J.; Lindsay, S.; Gorman, C. B.; Tao,
N. J. Chem. Phys. 2006, 326, 138.
’ ASSOCIATED CONTENT
S
Supporting Information. Reorganization energy evalua-
b
tion of molecule 1, additional data for conductance measurement
and ultrafast cyclic voltammetry, synthesis of molecules 1ꢀ3.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(25) Ren, B.; Picardi, G.; Pettinger, B. Rev. Sci. Instrum. 2004,
75, 837.
(26) Fortgang, P.; Amatore, C.; Maisonhaute, E.; Schollhorn, B.
Electrochem. Commun. 2010, 12, 897.
(27) Amatore, C.; Bouret, Y.; Maisonhaute, E.; Abruna, H. D.;
Goldsmith, J. I. C. R. Chim. 2003, 6, 99.
’ AUTHOR INFORMATION
(28) Li, X. L.; He, J.; Hihath, J.; Xu, B. Q.; Lindsay, S. M.; Tao, N. J.
J. Am. Chem. Soc. 2006, 128, 2135.
(29) Li, C.; Pobelov, I.; Wandlowski, T.; Bagrets, A.; Arnold, A.;
Evers, F. J. Am. Chem. Soc. 2008, 130, 318.
Corresponding Author
emmanuel.maisonhaute@upmc.fr; bwmao@xmu.edu.cn; chris-
tian.amatore@ens.fr; bernd.schollhorn@univ-paris-diderot.fr
(30) Haiss, W.; Martin, S.; Leary, E.; van Zalinge, H.; Higgins, S. J.;
Bouffier, L.; Nichols, R. J. J. Phys. Chem. C 2009, 113, 5823.
(31) Moore, A. M.; Mantooth, B. A.; Donhauser, Z. J.; Yao, Y. X.;
Tour, J. M.; Weiss, P. S. J. Am. Chem. Soc. 2007, 129, 10352.
(32) Cygan, M. T.; Dunbar, T. D.; Arnold, J. J.; Bumm, L. A.;
Shedlock, N. F.; Burgin, T. P.; Jones, L.; Allara, D. L.; Tour, J. M.; Weiss,
P. S. J. Am. Chem. Soc. 1998, 120, 2721.
(33) Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.; Burgin,
T. P.; Jones, L.; Allara, D. L.; Tour, J. M.; Weiss, P. S. Science 1996,
271, 1705.
(34) Tian, J. H.; Yang, Y.; Zhou, X. S.; Schollhorn, B.; Maisonhaute,
E.; Chen, Z. B.; Yang, F. Z.; Chen, Y.; Amatore, C.; Mao, B. W.; Tian,
Z. Q. ChemPhysChem 2010, 11, 2745.
(35) Martin, S.; Grace, I.; Bryce, M. R.; Wang, C. S.; Jitchati, R.;
Batsanov, A. S.; Higgins, S. J.; Lambert, C. J.; Nichols, R. J. J. Am. Chem.
Soc. 2010, 132, 9157.
(36) Schneebeli, S. T.; Kamenetska, M.; Cheng, Z.; Skouta, R.; Friesner,
R. A.; Venkataraman, L.; breslow, R. J. Am. Chem. Soc. 2011, 133, 2136.
(37) Amatore, C.; Maisonhaute, E.; Schollhorn, B.; Wadhawan, J.
ChemPhysChem 2007, 8, 1321.
(38) Hapiot, P. F.; Kispert, L. D.; Konovalov, V. V.; Saveant, J. M.
J. Am. Chem. Soc. 2001, 123, 6669.
(39) Schmickler, W.; Tao, N. J. Electrochim. Acta 1997, 42, 2809.
(40) Haiss, W.; Albrecht, T.; van Zalinge, H.; Higgins, S. J.; Bethell,
D.; Hobenreich, H.; Schiffrin, D. J.; Nichols, R. J.; Kuznetsov, A. M.;
Zhang, J.; Chi, Q.; Ulstrup, J. J. Phys. Chem. B 2007, 111, 6703.
(41) Albrecht, T.; Moth-Poulsen, K.; Christensen, J. B.; Guckian, A.;
Bjornholm, T.; Vos, J. G.; Ulstrup, J. Faraday Discuss. 2006, 131, 265.
(42) Albrecht, T.; Guckian, A.; Kuznetsov, A. M.; Vos, J. G.; Ulstrup,
J. J. Am. Chem. Soc. 2006, 128, 17132.
Author Contributions
3These two authors contributed equally to this work.
’ ACKNOWLEDGMENT
In Paris, this work was supported by the CNRS (UMR 8640
and LIA XiamENS), Ecole Normale Supꢀerieure, UPMC, and the
French Ministry of Research through ANR. In China, this work
was supported by the National Natural Science Foundation of
China (Nos. 20973141, 20911130235, and 21003110). X.S.Z.
and N.R. thank ANR and DGRST, respectively, for postdoctoral
grants.
’ REFERENCES
(1) Ratner, M. Nature 2005, 435, 575.
(2) Joachim, C.; Ratner, M. A. Proc. Natl. Acad. Sci. U.S.A. 2005,
102, 8801.
(3) Nitzan, A. Annu. Rev. Phys. Chem. 2001, 52, 681.
(4) Nitzan, A. J. Phys. Chem. A 2001, 105, 2677.
(5) Sikes, H. D.; Smalley, J. F.; Dudek, S. P.; Cook, A. R.; Newton,
M. D.; Chidsey, C. E. D.; Feldberg, S. W. Science 2001, 291, 1519.
(6) Chen, F.; Tao, N. J. Acc. Chem. Res. 2009, 42, 429.
(7) Xu, B. Q.; Tao, N. J. J. Science 2003, 301, 1221.
(8) Nichols, R. J.; Haiss, W.; Higgins, S. J.; Leary, E.; Martin, S.;
Bethell, D. Phys. Chem. Chem. Phys. 2010, 12, 2801.
(9) Tian, J. H.; Yang, Y.; Liu, B.; Schollhorn, B.; Wu, D. Y.;
Maisonhaute, E.; Muns, A. S.; Chen, Y.; Amatore, C.; Tao, N. J.; Tian,
Z. Q. Nanotechnology 2010, 21, 274012.
7515
dx.doi.org/10.1021/ja201042h |J. Am. Chem. Soc. 2011, 133, 7509–7516