2496
D. J. Gustin et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2492–2496
Kamtekar, S.; Cravatt, B. F.; Ahn, K.; Stevens, R. C. Proc. Natl. Acad. Sci. U.S.A.
2008, 10535, 12820; (b) Ahn, K.; Johnson, D. S.; Mileni, M.; Beidler, D.; Long, J.
Z.; McKinney, M. K.; Weerapana, E.; Sadagopan, N.; Liimatta, M.; Smith, S. E.;
Lazerwith, S.; Stiff, C.; Kamtekar, S.; Bhattacharya, K.; Zhang, Y.; Swaney, S.;
Van Becelaere, K.; Stevens, R. C.; Cravatt, B. F. Chem. Biol. 2009, 16, 411; (c)
Mileni, M.; Garfunkle, J.; DeMartino, J. K.; Cravatt, B. F.; Boger, D. L.; Stevens, R.
C. J. Am. Chem. Soc. 2009, 131, 10497; (d) Mileni, M.; Garfunkle, J.; Ezzili, C.;
Kimball, F. S.; Cravatt, B. F.; Stevens, R. C.; Boger, D. L. J. Med. Chem. 2010, 53,
230.
series of FAAH inhibitors can be optimized to target the CNS. We
have determined these compounds to have a unique binding mode
by X-ray crystallography. We expect that these compounds will be
useful in further studying the pharmacology of FAAH inhibition.
Additionally, the novel binding mode displayed by 8 and 45 should
provide a useful starting point for the design of future FAAH
inhibitors.
13. The selectivity of several FAAH inhibitors has been described, see: (a) Johnson,
D. S.; Stiff, C.; Lazerwith, S. E.; Kesten, S. R.; Fay, L. K.; Morris, M.; Beidler, D.;
Liimatta, M. B.; Smith, S. E.; Dudley, D. T.; Sadagopan, N.; Bhattachar, S. N.;
Kesten, S. J.; Nomanbhoy, T. K.; Cravatt, B. F. ACS Med. Chem. Lett. 2010, 2, 91;
(b) Zhang, D.; Saraf, A.; Kolasa, T.; Bhatia, P.; Zheng, G. Z.; Patel, M.; Lannoye, G.
S.; Richardson, P.; Stewart, A.; Rogers, J. C.; Brioni, J. D.; Surowy, C. S.
Neuropharmacology 2007, 52, 1095; (c) Leung, D.; Du, W.; Hardouin, C.; Cheng,
H.; Hwang, I.; Cravatt, B. F.; Boger, D. L. Bioorg. Med. Chem. Lett. 2005, 15, 1423.
14. The potential for observing idiosyncratic toxicity is generally thought to be
mitigated by avoiding covalent modifiers as drug candidates. See: Kumar, S.;
Mitra, K.; Kassahun, K.; Baillie, T. A. Adverse Drug Reactions, Handbook of
References and notes
1. Devane, W. A.; Hanus, L.; Breuer, A.; Pertwee, R. G.; Stevenson, L. a.; Griffin, G.;
Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Science 1992, 258,
1946.
2. (a) Porter, A.; Felder, C. F. Pharmacol. Ther. 2001, 90, 45; (b) Palmer, S. L.; Thakar,
G. A.; Makriyannis, A. Chem. Phys. Lipids 2002, 121, 3; (c) Mackie, K. Annu. Rev.
Pharmacol. Toxicol. 2006, 46, 101; (d) Ahn, K.; McKinney, M. K.; Cravatt, B. F.
Chem. Rev. 2008, 108, 1687.
3. (a) Fowler, C. J.; Naidu, P. S.; Lichtman, A.; Onnis, V. Br. J. Pharmacol. 2009, 156,
412; (b) Seierstad, M.; Breitenbucher, J. G. J. Med. Chem. 2008, 51, 732; (c)
Maccarrone, M. Curr. Pharm. Des. 2006, 12, 759.
4. (a) Cravatt, B. F.; Demarest, K.; Patricelli, M. P.; Bracey, M. H.; Giang, D. K.;
Martin, B. R.; Lichtman, A. H. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 937; (b)
Cravatt, B. F.; Lichtman, A. H. Curr. Opin. Chem. Biol. 2003, 7, 469.
5. (a) Lichtman, A. H.; Leung, D.; Shelton, C. C.; Saghatelian, A.; Hardouin, C.;
Boger, D. L.; Cravatt, B. F. J. Pharmacol. Exp. Ther. 2004, 311, 441; (b) Kimball, F.
S.; Romero, F. A.; Ezzili, C.; Garfunkle, J.; Rayl, T. J.; Hochstatter, D. G.; Hwang, I.;
Boger, D. L. J. Med. Chem. 2008, 51, 937; Disclosure of OL-135: (c) Boger, D. L.;
Miyauchi, H.; Du, W.; Hardouin, C.; Fecik, R. A.; Cheng, H.; Hwang, I.; Hedrick,
M. P.; Leung, D.; Acevedo, O.; Guimaraes, C. R. W.; Jorgensen, W. L.; Cravatt, B. F.
J. Med. Chem. 2005, 48, 1849.
6. Mor, M.; Rivara, S.; Lodola, A.; Plazzi, P. V.; Tarzia, G.; Duranti, A.; Tontini, A.;
Piersanti, G.; Kathuria, S.; Piomelli, D. J. Med. Chem. 2004, 47, 4998.
7. (a) Kinsey, S. G.; Long, J. Z.; O’Neal, S. T.; Abdulla, R. A.; Poklis, J. L.; Boger, D. L.;
Cravatt, B. F.; Lichtman, A. H. J. Pharmacol. Exp. Ther. 2009, 330, 902; (b) Palmer,
J. A.; Higuera, E. S.; Chang, L.; Chaplan, S. R. Neuroscience 2008, 154, 1554; (c)
Chang, L.; Luo, L.; Palmer, J. A.; Sutton, S.; Wilson, S. J.; Barbier, A. J. Br. J.
Pharmacol. 2006, 148, 102.
Experimental Pharmacology 196. Springer, Berlin Heidelberg, 2010,
p 511.
However, predicting adverse events pre-clinically remains difficult and several
covalent modifying drugs are approved for use; although in many cases the
mechanism of action of these drugs was determined after safety assessments.
For leading a reference see: Potashman, M. H.; Duggan, M. E. J. Med. Chem.
2009, 52, 1233.
15. (a)Encyclopedia of Chemical Biology; Farady, C. J., Craik, C. S., Eds.; John Wiley &
Sons: Hoboken, NJ, 2009; pp 49–60; (b) Zhong, J.; Groutas, W. C. Curr. Top. Med.
Chem. 2004, 4, 1203; (c) Maryanoff, B. E. J. Med. Chem. 2003, 769; (d) Powers, J.
C.; Asgian, J. L.; Ekici, O. D.; James, K. E. Chem. Rev. 2002, 102, 4639.
16. Version 4.5, Schrödinger, LLC, New York, NY, 2007.
17. In each case, spectral data (NMR and LCMS) obtained was consistent with the
assigned structure. Compounds were purified by chromatography to a purity of
>95% AUC as determined by analytical HPLC. Optically active compounds were
>97% ee.
18. Colombo, M.; Gigilo, M.; Peretto, I. J. Heterocycl. Chem. 2008, 454, 1077.
19. Ruckle, T.; Biamonte, M.; Grippi-Vallotton, T.; Arkinstall, S.; Cambet, Y.; Camps,
M.; Chabert, C.; Church, D. J.; Halazy, S.; Jiang, X.; Nichols, A.; Sauer, W.;
Grotteland, J.-P. J. Med. Chem. 2004, 47, 6921.
20. Burgey, C. S.; Stump, C. A.; Nguyen, D. N.; Deng, J. Z.; Quigley, A. G.; Norten, B.
R.; Bell, I. M.; Mosser, S. D.; Salvatore, C. A.; Rutledge, R. Z.; Kane, S. A.; Koblan,
K. S.; Vacca, J. P.; Graham, S. L.; Williams, T. L. Bioorg. Med. Chem. Lett. 2006, 16,
5052.
8. Wang, X.; Sarris, K.; Kage, K.; Zhang, D.; Brown, S. P.; Kolasa, T.; Surowy, C.; El
Kouhen, O. F.; Muchmore, S. W.; Brioni, J. D.; Stewart, A. O. J. Med. Chem. 2009,
52, 170.
21. (a) Ueno, H.; Yokota, K.; Hoshi, J. I.; Yasue, K.; Hayashi, M.; Hase, Y.; Uchida, I.;
Aisaka, K.; Katoh, S.; Cho, H. J. Med. Chem. 2005, 48, 3586; (b) Qian, K.; Wang, L.;
Cywin, C. L.; Farmer, B. T. II.; Hickey, E.; Homon, C.; Jakes, S.; Kashem, M. A.;
Lee, G.; Leonard, S.; Li, J.; Magboo, R.; Mao, W.; Pack, E.; Peng, C.; Prokopowicz,
A. III.; Welzel, M.; Wolak, J.; Morwick, T. J. Med. Chem. 2009, 52, 1814; c
Katamreddy, S R.; Caldwell, R. D.; Heyer, D.; Samano, V.; Thompson, J. B.;
Carpenter, A. J.; Conlee, C. R.; Boros, E. E.; Thompson, B. D. PCT Int. Appl.
WO2008008887, 2008; (d) Pei, Z.; Xiaofeng, L.; von Geldern, T. W.;
Longenecker, K.; Pireh, D.; Stewart, K. D.; Backes, B. J.; Lai, C.; Lubben, T. H.;
Ballaron, S. J.; Beno, D. W. A.; Kempf-Grote, A. J.; Sham, H. L.; Trevillyan, J. M. J.
Med. Chem. 2007, 50, 1983.
22. Evaluation of Enzyme Inhibitors in Drug Discovery; Copeland, R. A., Ed.; John
Wiley & Sons: Hoboken, NJ, 2005; pp 125–128.
23. Alexander, J. P.; Cravatt, B. F. Chem. Biol. 2005, 12, 1179.
24. Battista, K. A. Bignan, G. C.; Connolly, P. J. Middleton, S. A.; Orsini, M. J.; Liu, J. L.;
Reitz, A. B. PCT Int. Appl. 2007050381, 2007.
25. Perregaard, J.; Arnt, J.; Boegesoe, K. P.; Hyttel, J.; Sanchez, C. J. Med. Chem. 1992,
35, 1092.
9. Biochemical assays: purified rat or human FAAH was incubated at 37 °C with
AAMCA in 125 mM TRIS, pH 9.0 containing 1 mM EDTA and 0.1% fatty acid free
BSA for 2 h in the presence or absence of test compounds. FAAH inhibition is
determined by measuring AAMCA produced by UV.Whole-cell assays: RBL-2H3
or T84 cells were incubated in HBBS, 20 mM HEPES, pH 7.8, 10% glucose, 0.1%
fatty acid-free BSA and test compounds for 30 min. 1-3H AEA was added and
incubation continued 2 h before 1:1 MeOH/CHCl3 was added. The aq. layer was
collected and FAAH inhibition was determined through quantitation of 1-3H-
ethanolamine by scintillation. Note: one must exercise caution when
comparing the potencies of reversible and irreversible inhibitors since the
IC50 value for an irreversible inhibitor will be highly dependent on incubation
periods.
10. For mechanistic studies of similar piperidinyl-urea based FAAH inhibitors see:
Ahn, K.; Johnson, D. S.; Fitzgerald, L. R.; Liimatta, M.; Arendse, A.; Stevenson, T.;
Lund, E. T.; Nugent, R. A.; Nomanbhoy, T. K.; Alexander, J. P; Cravatt, B. F.
Biochemistry, 2007, 46, 13019. For detailed characterization of 1a see: Keith, J. M.;
Apodaca, R.; Xiao, W.; Seierstad, M.; Pattabiraman, K.; Wu, J.; Webb, M.; Karbarz,
M. J.; Brown, S.; Wilson, S.; Scott, B.; Tham, C. S.; Luo, L.; Palmer, J.; Wennerholm,
M.; Chaplan, S.; Breitenbucher, J. G. Bioorg. Med. Chem. Lett. 2008, 18, 4838.
11. Min, X.; Thibault, S.; Porter, A. C.; Gustin, D. J.; Carlson, Timothy, J.; Xu, H.;
Lindstrom, M.; Xu, G.; Uyeda, C.; Ma, Z.; Li, Y.; Kayser, F.; Walker, N. P. C.;
Wang, Z. Proc. Natl. Acad. Sci. U. S. A. submitted for publication.
26. Desarbe, E.; Coudret, S.; Meheust, C.; Merour, J.-Y. Tetrahedron 1997, 53, 3637.
27. (a) Huang, L.; Berry, L.; Ganga, S.; Janosky, B.; Chen, A.; Roberts, J.; Colletti, A. E.;
Lin, M.-H. J. Drug Metab. Dispos. 2010, 38, 223; (b) Xu, L.; Chen, Y.; Pan, Y.;
Skiles, G. L.; Shou, M. Drug Metab. Dispos. 2009, 10, 2330; Also see: (c) Wang, Q.;
Rager, J. D.; Weinstein, K.; Kardos, P. S.; Dobson, G. L.; Li, J.; Hidalgo, I. J. Int. J.
Pharm. 2005, 288, 349.
12. For previous co-crystals of FAAH with small molecules see the following
reports and references cited therein: (a) Mileni, M.; Johnson, D. S.; Wang, Z.;
Everdeen, D. S.; Liimatta, M.; Pabst, B.; Bhattacharya, K.; Nugent, R. A.;
28. Schaffer, C. L. Annu. Rep. Med. Chem. 2010, 45, 10.