2254
S. Masuda et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2252–2254
Acknowledgements
We are grateful to Professor Kazuo Harada of the Department of
Life Sciences, Tokyo Gakugei University, for affording the facilities
for analysis of protein complexes. This research was supported by
Grants-in-Aid for Scientific Research (20390032, 21310138) from
the Ministry of Education, Culture, Sports, Science and Technology
of Japan.
Figure 4. Effect of calcium on labeling of tropomyosin. Actomyosin (3.9 lg) was
incubated with probe 3a (125 lM) in a solution containing 30 mM Tris–HCl (pH
References and notes
7.2), 1 mM CaCl2 or 1 mM EGTA, and 5 mM MgCl2. Photolabeling and detection
were performed by using the same method described in Figure 2. Lane 1: size
markers; lanes 2 and 3: chemiluminescent detection of photolabeled samples in the
presence of 1 mM CaCl2 (lane 2) and in the absence of Ca2+ (lane 3).
1. Spudich, J. A.; Sivaramakrishnan, S. Nat. Rev. Mol. Cell Biol. 2010, 11, 128.
2. Himmel, D. M.; Gourinath, S.; Reshetnikova, L.; Shen, Y.; Szent-Györgyi, A. G.;
Cohen, C. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12645.
3. Thomas, D. D.; Kast, D.; Korman, V. L. Annu. Rev. Biophys. 2009, 38, 347.
4. Yount, R. G.; Cremo, C. R.; Grammer, J. C.; Kerwin, B. A. Philos. Trans. R. Soc.
Lond., B, Biol. Sci. 1992, 336, 55.
5. (a) Wong, Y. S.; Lagarias, J. C. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 3469; (b)
Zhang, Y. Y.; Hammarberg, T.; Radmark, O.; Samuelsson, B.; Ng, C. F.; Funk, C.
D.; Loscalzo, J. Biochem. J. 2000, 351, 697; (c) Maruta, S.; Ohki, T.; Kambara, T.;
Ikebe, M. Eur. J. Biochem. 1998, 256, 229.
6. (a) Williams, N.; Coleman, P. S. J. Biol. Chem. 1982, 257, 2834; (b) Oliveira, R. G.;
Coan, C.; Verjovski-Almeida, S. J. Biol. Chem. 1988, 263, 1861; (c) Williams, N.;
Ackerman, S. H.; Coleman, P. S. Methods Enzymol. 1986, 126, 667.
7. (a) Thompson, A. A.; Zou, A.; Yan, J.; Duggal, R.; Hao, W.; Molina, D.; Cronin, C.
N.; Wells, P. A. Biochemistry 2009, 48, 906; (b) Vandest, P.; Labbe, J. P.; Kassab,
R. Eur. J. Biochem. 1980, 104, 433.
8. Geeves, M. A.; Holmes, K. C. Adv. Protein Chem. 2005, 71, 161.
9. Jahn, W. Biochemistry 2007, 46, 9654.
10. Allen, J. J.; Li, M.; Brinkworth, C. S.; Paulson, J. L.; Wang, D.; Hübner, A.; Chou,
W. H.; Davis, R. J.; Burlingame, A. L.; Messing, R. O.; Katayama, C. D.; Hedrick, S.
M.; Shokat, K. M. Nat. Methods 2007, 4, 511.
Figure 5. Docking model of the photoprobe 3a binding to chicken myosin. The
probe 3a is shown as a CPK model, in which the nitrogen (blue) of the diazirine is
indicated by a blue arrow. The probe binds to the ATP binding site and directs its
photoreactive diazirine to the 50-kDa cleft (actin-binding interface) indicated by
the red arrow. Original data refers to PDB: 1W7I.
11. (a) Nassal, M. Liebigs Ann. Chem. 1983, 1519; (b) Wang, J.; Kubicki, J.; Peng, H.;
Platz, M. S. J. Am. Chem. Soc. 2008, 130, 6604.
12. (a) Hashimoto, M.; Hatanaka, Y. Eur. J. Org. Chem. 2008, 2008, 2513; (b)
Blencowe, A.; Hayes, W. Soft Matter 2005, 1, 178; (c) Moss, R. A. Acc. Chem. Res.
2006, 39, 267.
13. Kaneda, M.; Masuda, S.; Tomohiro, T.; Hatanaka, Y. ChemBioChem 2007, 8, 595.
14. (a) Nakashima, H.; Hashimoto, M.; Sadakane, Y.; Tomohiro, T.; Hatanaka, Y. J.
Am. Chem. Soc. 2006, 128, 15092; (b) Hatanaka, Y.; Kempin, U.; Park, J.-J. J. Org.
Chem. 2000, 65, 5639.
Our ATP probes clearly showed the tropomyosin-specific nature
of labeling in actomyosin. Previous reports showed that photoacti-
vatable ATP analogs labeled myosin or myosin S1, in which the
photophore was attached on the adenine ring5c or in the ribose
ring,21 respectively. We examined the molecular docking of
photoprobe 3a with the reported X-ray crystallographic structure
of myosin. Since the ATP-bound crystal structure has only been re-
vealed for scallop myosin,2 we used the chicken myosin–ADP com-
plex from the Protein Data Bank (PDB) 1W7I dataset which reflects
the ATP binding state.22 The probe 3a manually docked into 1W7I
by replacing bound ADP (Fig. 5). The probe binds to the ATP binding
site of myosin by directing the photoactivatable diazirine to actin
within the actomyosin complex, and the distance from the diazi-
rine to the actin filament could be estimated at a few nm.23 Since
the short-lived carbene intermediate immediately cross-links to a
spatially closed molecule,11 our result of probing the tropomyosin
on the actin filament suggests that the diazirine moiety of 3a and
3b should exist near to the tropomyosin coil on the actin filament
through binding with myosin. This suggests the hypothesis that
the tropomyosin coil remains in the 50-kDa cleft throughout the
15. Rajagopalan, K.; Chavan, A. J.; Haley, B. E.; Watt, D. S. J. Biol. Chem. 1993, 268,
14230.
16. Compound 3a: 1H NMR (500 MHz, D2O, Me3SiCD2CD2CO2Na (TSP-d4)): d 8.41
(1H, s), 8.18 (1H, s), 7.13 (2H, d, J = 8.3 Hz), 6.84 (2H, d, J = 8.3 Hz), 5.97 (1H, d,
J = 5.6 Hz), 4.59 (1H, t, J = 5.3 Hz), 4.48 (1H, t, J = 4.3 Hz), 4.36–4.42 (2H, m),
4.24–4.30 (1H, m), 3.92 ppm (2H, d, J = 8.1 Hz); 19F NMR (376 MHz, D2O-
CD3OD, CFCl3): d À64.2 ppm (3F, s); HRMS (FAB+): Calcd for C19H22O12N8F3P3
[M+H]+ 705.0601. Found 705.0624; 3b: 1H NMR (500 MHz, CD2OD): d 8.66 (1H,
br s), 8.16 (1H, s), 7.61 (1H, br s), 6.79 (1H, d, J = 7.0 Hz), 6.63 (1H, S), 6.09 (1H,
d, J = 5.6 Hz), 4.57 (1H, br s), 4.44 (1H, dd, J = 4.7, 8.1 Hz), 4.18–4.30 (5H, m),
4.11 (2H, t, J = 4.7 Hz), 3.87 (2H, t, J = 4.7 Hz), 3.71–3.73 (2H, m), 3.63–3.66 (2H,
m), 3.55 (2H, t, J = 5.1 Hz), 3.34 (2H, t, J = 5.1 Hz), 3.10–3.15 (1H, m), 2.88 (1H,
dd, J = 5.1, 12.8 Hz), 2.67 (1H, d, J = 12.8 Hz), 2.16–2.20 (2H, m), 1.38–1.62 (2H,
m), 1.35–1.40 (2H, m), 1.28–1.31 ppm (2H, m); 19F NMR (367 MHz, CD3OD,
CFCl3): d À65.2 ppm (s, 3F); HRMS (FAB+): Calcd for C35H52O17N11F3P3S [M+H]+
1080.2428. Found 1080.2465.
17. Prochniewicz, E.; Walseth, T. F.; Thomas, D. D. Biochemistry 2004, 43, 10642.
18. Lemonnier, M.; Balvay, L.; Mouly, V.; Libri, D.; Fiszman, M. Y. Gene 1991, 107,
229.
19. Wu, S.; Liu, J.; Reedy, M. C.; Winkler, H.; Reedy, M. K.; Taylor, K. A. J. Struct. Biol.
2009, 168, 485.
ATP binding stage regardless of the presence of Ca2+
In conclusion, we have synthesized diazirine-based photoacti-
vatable ATP probes modified at the -phosphate, and these probes
.
´
20. Lehman, W.; Galinska-Rakoczy, A.; Hatch, V.; Tobacman, L. S.; Craig, R. J. Mol.
Biol. 2009, 388, 673.
c
21. (a) Cole, D. G.; Yount, R. G. J. Biol. Chem. 1990, 265, 22537; (b) Sutoh, K.;
Yamamoto, K.; Wakabayashi, T. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 212.
22. Coureux, P.-D.; Sweeney, H. L.; Houdusse, A. EMBO J. 2004, 23, 4527.
23. (a) Pfaendtner, J.; Lyman, E.; Pollard, T. D.; Voth, G. A. J. Mol. Biol. 2010, 396,
252; (b) Houdusse, A.; Kalabokis, V. N.; Himmel, D.; Szent-Györgyi, A. G.;
Cohen, C. Cell 1999, 97, 459.
provided the first case showing that tropomyosin is specifically la-
beled by ATP analogs in the actomyosin complex. Our probe could
therefore be a useful tool to analyze the role of tropomyosin during
the conformational change of the actomyosin complex.