Journal of the American Chemical Society
ARTICLE
correlation of the UVꢀvis band frequencies with the O
H
(3) (a) Steiner, Th.; Saenger, W. Acta Crystallogr. 1994, B50, 348–
357. (b) Steiner, Th. J. Chem. Soc., Chem. Commun. 1995, 1331–1332.
(c) Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 1994,
116, 909–915. (d) Steiner, Th. J. Phys. Chem. A 1998, 102, 7041–7052.
(4) (a) Benedict, H.; Limbach, H. H.; Wehlan, M.; Fehlhammer,
W. P.; Golubev, N. S.; Janoschek, R. J. Am. Chem. Soc. 1998, 120, 2939–
2950. (b) Lorente, P.; Shenderovich, I. G.; Golubev, N. S.; Denisov,
G. S.; Buntkowsky, G.; Limbach, H. H. Magn. Reson. Chem. 2001,
39, S18–S29.
(5) Ramos, M.; Alkorta, I.; Elguero, J.; Golubev, N. S.; Denisov,
G. S.; Benedict, H.; Limbach, H. H. J. Phys. Chem. A 1997, 101, 9791–
9800.
(6) Smirnov, S. N.; Golubev, N. S.; Denisov, G. S.; Benedict, H.;
Schah-Mohammedi, P.; Limbach, H. H. J. Am. Chem. Soc. 1996,
118, 4094–4101.
3 3 3
distances, a result which had not previously been recognized. The
advantage of UVꢀvis spectroscopy is that different H-bond
configurations are in slow exchange. Hence, once the samples
have been characterized by NMR, UVꢀvis provides information
about whether the proton motion involves single or double wells
and how H-bond configurations are influenced by the solvent. In
the case of weaker hydrogen bonds, we observed single UV bands
indicating the occurrence of single wells for the proton motion.
By contrast, dual bands were observed for strong and short
hydrogen bonds, indicating the presence of two configurations, i.
e., tautomeric states. As a consequence, the inhomogeneous part
of the UVꢀvis bands provides evidence about the distribution of
H-bond geometries. These findings may be important in the
interpretation of UVꢀvis shifts after irradiation of phenolic
chromophores in proteins such as the photoactive yellow
protein28 with light. A quantitative treatment of the correlations
of the above-mentioned spectroscopic parameters with H-bond
geometry, based on existing quantitative relationships, is pending
and will be published elsewhere. In any case, the experimental
results obtained in this study may require further theoretical studies.
(7) Limbach, H. H.; Denisov, G. S.; Golubev, N. S. In Isotope Effects
in Chemistry and Biology; Kohen, A., Limbach, H. H., Eds.; Taylor
& Francis: Boca Raton, FL, 2006; pp 193ꢀ230.
(8) Tolstoy, P. M.; Schah-Mohammedi, P.; Smirnov, S. N.; Golubev,
N. S.; Denisov, G. S.; Limbach, H. H. J. Am. Chem. Soc. 2004, 126,
5621–5634.
(9) Limbach, H. H.; Tolstoy, P. M.; Pꢀerez-Hernꢀandez, N.; Guo, J.;
Shenderovich, I. G.; Denisov, G. S. Isr. J. Chem. 2009, 49, 199–216.
(10) (a) Sternberg, U.; Brunner, E. J. Magn. Reson. A 1994, 108,
142–150. (b) Harris, T. K.; Zhao, Q.; Mildvan, A. S. J. Mol. Struct. 2000,
552, 97–109.
’ ASSOCIATED CONTENT
(11) Jeffrey, G. A.; Yeon, Y. Acta Crystallogr. B 1986, B42, 410–413.
(12) Shenderovich, I. G.; Limbach, H. H.; Smirnov, S. N.; Tolstoy,
P. M.; Denisov, G. S.; Golubev, N. S. Phys. Chem. Chem. Phys. 2002,
4, 5488–5497.
(13) Shenderovich, I. G.; Tolstoy, P. M.; Golubev, N. S.; Smirnov,
S. N.; Denisov, G. S.; Limbach, H. H. J. Am. Chem. Soc. 2003, 125,
11710–11720.
(14) Detering, C.; Tolstoy, P. M.; Golubev, N. S.; Denisov, G. S.;
Limbach, H. H. Dokl. Phys. Chem. 2001, 379, 1–4.
(15) Schah-Mohammedi, P.; Shenderovich, I. G.; Detering, C.;
Limbach, H. H.; Tolstoy, P. M.; Smirnov, S. N.; Denisov, G. S.; Golubev,
N. S. J. Am. Chem. Soc. 2000, 122, 12878–12879.
(16) Tolstoy, P.; Guo, J.; Koeppe, B.; Golubev, N.; Denisov, G.;
Smirnov, S.; Limbach, H. H. J. Phys. Chem. A 2010, 114, 10775–10782.
(17) Gu, Z.; Zambrano, R.; McDermott, A. J. Am. Chem. Soc. 1994,
116, 6368–6372.
(18) (a) Sharif, S.; Denisov, G. S.; Toney, M. D.; Limbach, H. H. J.
Am. Chem. Soc. 2007, 129, 6313–6327. (b) Sharif, S.; Denisov, G. S.;
Toney, M. D.; Limbach, H. H. J. Am. Chem. Soc. 2006, 128, 3375–3387.
(c) Sharif, S.; Fogle, E.; Toney, M. D.; Denisov, G. S.; Shenderovich,
I. G.; Tolstoy, P. M.; Chan-Huot, M.; Buntkowsky, G.; Limbach, H. H. J.
Am. Chem. Soc. 2007, 129, 9558–9559.
S
Supporting Information. Sample composition (types A
b
and B) as determined by 1H NMR and ratios n(HX)/n(Xꢀ) for
type A samples; schematics of UVNMR sample tubes; complete
set of low-field parts of 1H NMR, 13C NMR, and UVꢀvis spectra
for complexes 1ꢀ27; wavelengths of the UVꢀvis bands' maxima,
1
centers of gravity, and bandwidths as well as the H NMR
chemical shifts of the ortho protons of the chromophore for
1
complexes 1ꢀ27; and comparison of the position of H NMR
signals of complexes 3ꢀ22 and 24ꢀ27 for type A and type B
samples. This material is available free of charge via the Internet
’ AUTHOR INFORMATION
Corresponding Author
Present Addresses
§Max Born Institut f€ur Nichtlineare Optik and Kurzzeitspektroskopie,
Max-Born-Strasse 2A, D-12489 Berlin, Germany
(19) Golubev, N. S.; Denisov, G. S.; Smirnov, S. N.; Shchepkin,
D. N.; Limbach, H. H. Z. Phys. Chem. 1996, 196, 73–84.
(20) Perrin, C. L.; Lau, J. S. J. Am. Chem. Soc. 2006, 128, 11820–
11824.
’ ACKNOWLEDGMENT
We thank Dr. E. T. J. Nibbering, Max-Born Institute, Berlin,
and Prof. G. S. Denisov, St. Petersburg State University, as well as
Prof. Maurice Kreevoy, Minneapolis, for helpful discussions. This
work has been supported by the Deutsche Forschungsge-
meinschaft, Bonn, the Fonds der Chemischen Industrie, Frank-
furt, the Russian Foundation of Basic Research, and the
European Research Council under the European Union’s Se-
venth Framework Program (FP7/2007-2013/ERC grant agree-
ment no. 247051 T.E.).
(21) Perrin, C. L. Acc. Chem. Res. 2010, 43, 1550–1557.
(22) (a) Nagakura, S.; Baba, H. J. Am. Chem. Soc. 1952, 74,
5693–5698. (b) Baba, H.; Suzuki, S. J. Chem. Phys. 1961, 35, 1118–
1127. (c) Baba, H.; Suzuki, S. J. Chem. Phys. 1963, 38, 349–353.
(23) (a) Bell, C. L.; Barrow, G. M. J. Chem. Phys. 1959, 31, 1158–
1163. (b) Baba, H.; Matsuyama, A.; Kokubun, H. J. Chem. Phys. 1964,
41, 895–896. (c) Baba, H.; Matsuyama, A.; Kokubun, H. Spectrochim.
Acta 1969, 25A, 1709–1722. (d) Hudson, R. A.; Scott, R. M.; Vino-
gradov, S. N. J. Phys. Chem. 1972, 76, 1989–1993. (e) Romanowski, H.;
Sobczyk, L. J. Phys. Chem. 1975, 79, 2535–2542.
’ REFERENCES
(24) Kreevoy, M. M.; Liang, T. M. J. Am. Chem. Soc. 1980, 102,
3315–3322.
(1) Isotope Effects in Chemistry and Biology; Kohen, A., Limbach,
H. H., Eds.; Taylor & Francis: Boca Raton, FL, 2006.
(2) Hydrogen Transfer Reactions; Hynes, J. T., Klinman, J.,
Limbach, H. H., Schowen, R. L., Eds.; Wiley-VCH: Weinheim, 2007;
Vols. 1ꢀ4.
(25) (a) Magonski, J. J. Solution Chem. 1990, 19, 597–607.
(b) Magonski, J. J. Phys. Org. Chem. 2002, 15, 204–210.
(26) (a) Pawlak, Z.; Magonksi, J.; Jasinski, T. J. Mol. Struct. 1978,
47, 329–338. (b) Pawlak, Z.; Magonksi, J. J. Mol. Struct. 1980,
7907
dx.doi.org/10.1021/ja201113a |J. Am. Chem. Soc. 2011, 133, 7897–7908