Organic Letters
Letter
(2) (a) Kirmse, W. Eur. J. Org. Chem. 2002, 2002, 2193−2256.
(b) Coquerel, Y.; Rodriguez, J.. In Molecular Rearrangements in
Organic Synthesis; Wiley, 2015; pp 59−84. (c) Ciszewski, L. W.;
Rybicka-Jasinska, K.; Gryko, D. Org. Biomol. Chem. 2019, 17, 432−
448. (d) Tomioka, H.; Okuno, H.; Izawa, Y. J. Org. Chem. 1980, 45,
5278−5283. (e) Csizmadia, I. G.; Font, J.; Strausz, O. P. J. Am. Chem.
Soc. 1968, 90, 7360−7361. (f) Cui, G.; Thiel, W. Angew. Chem., Int.
Ed. 2013, 52, 433−436. (g) Wolff, L. Justus Liebigs Ann. Chem. 1902,
325, 129−195.
conditions, the reactive ketene intermediate is generated slowly
and directly trapped by the nucleophic catalyst, leading to the
chiral product with high stereoselectivity. Under the standard
reaction conditions, compared to substrate 1a, α-diazoketone
1a′ could undergo aryl-migrative Wolff rearrangement,
generating the same phenyl methyl ketene I, and provided
chiral ester 3a with identical enantioselectivity and slightly
lower yield (Scheme 5b). The above results all support that the
reaction proceeds through the ketene intermediate. As for the
chiral amine-catalyzed ketene esterification step, it is widely
accepted that there could be two mechanistic pathways:7c,9,20
(1) initial formation of an amine alcohol (phenol) complex as
a “chiral nucleophile”, which reacts with the ketene cabonyl
(Scheme 5c), and (2) nucleophilic attack of the amine catalyst
to the ketene to form a C1 ammonium enolate21 intermediate,
which undergoes an asymmetric proton-transfer process with
the phenol (Scheme 5d). When phenol 2r and catalyst 4c are
(3) (a) Ogata, Y.; Sawaki, Y.; Ohno, T. J. Am. Chem. Soc. 1982, 104,
216−219. (b) Tomioka, H.; Okuno, H.; Kondo, S.; Izawa, Y. J. Am.
Chem. Soc. 1980, 102, 7123−7125. (c) Bernardim, B.; Hardman-
Baldwin, A. M.; Burtoloso, A. C. B. RSC Adv. 2015, 5, 13311−13314.
(d) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091−1160.
(4) Yang, H.; Foster, K.; Stephenson, C. R. J.; Brown, W.; Roberts,
E. Org. Lett. 2000, 2, 2177−2179.
(5) Paull, D. H.; Weatherwax, A.; Lectka, T. Tetrahedron 2009, 65,
6771−6803.
(6) Pracejus, H. Justus. Liebigs. Ann. Chem. 1960, 634, 9.
(7) (a) Fu, G. C. Acc. Chem. Res. 2000, 33, 412−420. (b) Schaefer,
C.; Fu, G. C. Angew. Chem., Int. Ed. 2005, 44, 4606−4608. (c) Wiskur,
S. L.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 6176−6177. (d) Hodous,
B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 10006−10007.
(8) Wang, X. N.; Lv, H.; Huang, X. L.; Ye, S. Org. Biomol. Chem.
2009, 7, 346−350.
1
mixed, there is no evidence by H NMR for formation of an
ion pair, which was observed in the chiral DMAP-catalyzed
addition of phenol to ketenes reported by Fu.7c This is
probably due to the weaker basity of the benzotetramisole-type
catalyst. As such, the second pathway of nucleophilic catalysis
is highly favored for the current reaction.
In conclusion, we have developed the first asymmetric Wolff
rearrangement reaction that directly transforms α-diazoketones
into chiral esters using a commercially available phenol
derivative. The cascade reaction consists of a visible-light-
induced Wolff rearrangement, which slowly generates the
ketene intermediate, and subsequent chiral benzotetramisole-
catalyzed asymmetric ketene esterification. The current
method allows for effective access to the broadly useful α,α-
disubstituted carboxylic esters with up to 97.5:2.5 er.
́
(9) Concellon, C.; Duguet, N.; Smith, A. D. Adv. Synth. Catal. 2009,
351, 3001−3009.
(10) (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007,
́
107, 5606−5655. (b) Marion, N.; Díez-Gonzalez, S.; Nolan, S. P.
Angew. Chem., Int. Ed. 2007, 46, 2988−3000. (c) Liu, B.; Yan, J.;
Huang, R.; Wang, W.; Jin, Z.; Zanoni, G.; Zheng, P.; Yang, S.; Chi, Y.
R. Org. Lett. 2018, 20, 3447−3450.
(11) (a) Yang, X.; Liu, P.; Houk, K. N.; Birman, V. B. Angew. Chem.,
Int. Ed. 2012, 51, 9638−9642. (b) Yang, X.; Birman, V. B. Angew.
Chem., Int. Ed. 2011, 50, 5553−5555.
(12) Shiina, I.; Ono, K.; Nakata, K. Catal. Sci. Technol. 2012, 2,
2200−2205.
ASSOCIATED CONTENT
* Supporting Information
■
(13) Chen, X.; Fong, J. Z. M.; Xu, J.; Mou, C.; Lu, Y.; Yang, S.; Song,
B.-A.; Chi, Y. R. J. Am. Chem. Soc. 2016, 138, 7212−7215.
(14) (a) Li, L. L.; Ding, D.; Song, J.; Han, Z. Y.; Gong, L. Z. Angew.
Chem., Int. Ed. 2019, 58, 7647−7651. (b) Meng, J.; Fan, L.-F.; Han,
Z.-Y.; Gong, L.-Z. Chem. 2018, 4, 1047−1058. (c) Meng, J.; Li, X.-H.;
Han, Z.-Y. Org. Lett. 2017, 19, 1076−1079.
S
The Supporting Information is available free of charge on the
Complete experimental procedures and characterization
data for the prepared compounds (PDF)
(15) (a) Liu, D.; Ding, W.; Zhou, Q. Q.; Wei, Y.; Lu, L. Q.; Xiao, W.
J. Org. Lett. 2018, 20, 7278−7282. (b) Li, M.-M.; Wei, Y.; Liu, J.;
Chen, H.-W.; Lu, L.-Q.; Xiao, W.-J. J. Am. Chem. Soc. 2017, 139,
14707−14713. (c) Liu, J.; Li, M. M.; Qu, B. L.; Lu, L. Q.; Xiao, W. J.
Chem. Commun. 2019, 55, 2031−2034.
(16) (a) Merad, J.; Pons, J.-M.; Chuzel, O.; Bressy, C. Eur. J. Org.
Chem. 2016, 2016, 5589−5610. (b) Birman, V. B.; Li, X. Org. Lett.
2006, 8, 1351−1354. (c) Birman, V. B.; Li, X. Org. Lett. 2008, 10,
1115−1118. (d) Yang, X.; Birman, V. B. Adv. Synth. Catal. 2009, 351,
2301−2304. (e) Belmessieri, D.; Morrill, L. C.; Simal, C.; Slawin, A.
M. Z.; Smith, A. D. J. Am. Chem. Soc. 2011, 133, 2714−2720.
(f) Simal, C.; Lebl, T.; Slawin, A. M.; Smith, A. D. Angew. Chem., Int.
Ed. 2012, 51, 3653−3657.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
(17) (a) Schwarz, K. J.; Yang, C.; Fyfe, J. W. B.; Snaddon, T. N.
Angew. Chem., Int. Ed. 2018, 57, 12102−12105. (b) Schwarz, K. J.;
Pearson, C. M.; Cintron-Rosado, G. A.; Liu, P.; Snaddon, T. N.
Angew. Chem., Int. Ed. 2018, 57, 7800−7803. (c) Spoehrle, S. S. M.;
West, T. H.; Taylor, J. E.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem.
Soc. 2017, 139, 11895−11902. (d) Jiang, X.; Beiger, J. J.; Hartwig, J.
F. J. Am. Chem. Soc. 2017, 139, 87−90. (e) Schwarz, K. J.; Amos, J. L.;
Klein, J. C.; Do, D. T.; Snaddon, T. N. J. Am. Chem. Soc. 2016, 138,
5214−5217. (f) Song, J.; Zhang, Z. J.; Chen, S. S.; Fan, T.; Gong, L.
Z. J. Am. Chem. Soc. 2018, 140, 3177−3180. (g) Song, J.; Zhang, Z. J.;
Gong, L. Z. Angew. Chem., Int. Ed. 2017, 56, 5212−5216.
(18) Hatzelmann, A.; Fruchtmann, R.; Mohrs, K. H.; Raddatz, S.;
ACKNOWLEDGMENTS
We are grateful for the financial support from NSFC (Grant
Nos. 21831007, 21772184, and 21971231).
■
REFERENCES
■
(1) (a) Noguchi, S.; Kishimoto, S.; Minamida, I.; Obayashi, M.;
Kawakita, K. Chem. Pharm. Bull. 1971, 19, 646−648. (b) Bodor, N.;
Woods, R.; Raper, C.; Kearney, P.; Kaminski, J. J. J. Med. Chem. 1980,
23, 474−480. (c) Addor, R.; Berkelhammer, G. In Annual Reports in
Medicinal Chemistry; Hess, H.-J., Ed.; Academic Press, 1982; Vol. 17,
pp 311−321.
Mu
̈
ller-Peddinghaus, R. Biochem. Pharmacol. 1993, 45, 101−111.
D
Org. Lett. XXXX, XXX, XXX−XXX