10.1002/anie.201703380
Angewandte Chemie International Edition
COMMUNICATION
Acknowledgements
5257. l) Y. Kita, R. D. Kavthe, H. Oda, K. Mashima, Angew. Chem., Int.
Ed. 2016, 55, 1098-1101.
We thank the EPSRC and AstraZeneca (Industrial CASE
Studentship to C.Y., grant number EP/N509309/1), the EPSRC
Centre for Doctoral Training in Sustainable Chemistry (grant
number EP/L015633/1), the European Commission (Marie
Skłowdowska-Curie Fellowship to S.N.K., project number
702386), the University of Nottingham, and GlaxoSmithKline for
support of this work.
[9]
For examples of enantiospecific rather than enantioselective Ni-
catalyzed allylic or benzylic substitutions, see: a) B. L. H. Taylor, E. C.
Swift, J. D. Waetzig, E. R. Jarvo, J. Am. Chem. Soc. 2011, 133, 389-
391. b) B. L. H. Taylor, M. R. Harris, E. R. Jarvo, Angew. Chem., Int. Ed.
2012, 51, 7790-7793. c) M. R. Harris, L. E. Hanna, M. A. Greene, C. E.
Moore, E. R. Jarvo, J. Am. Chem. Soc. 2013, 135, 3303-3306. d) Q.
Zhou, H. D. Srinivas, S. Dasgupta, M. P. Watson, J. Am. Chem. Soc.
2013, 135, 3307-3310. e) H. M. Wisniewska, E. C. Swift, E. R. Jarvo, J.
Am. Chem. Soc. 2013, 135, 9083-9090. f) I. M. Yonova, A. G. Johnson,
C. A. Osborne, C. E. Moore, N. S. Morrissette, E. R. Jarvo, Angew.
Chem., Int. Ed. 2014, 53, 2422-2427. g) H. D. Srinivas, Q. Zhou, M. P.
Watson, Org. Lett. 2014, 16, 3596-3599. h) E. J. Tollefson, D. D.
Dawson, C. A. Osborne, E. R. Jarvo, J. Am. Chem. Soc. 2014, 136,
14951-14958. i) E. J. Tollefson, L. E. Hanna, E. R. Jarvo, Acc. Chem.
Res. 2015, 48, 2344-2353.
Keywords: allylic substitution
cyclization • isomerization • nickel
•
asymmetric catalysis
•
[1]
Selected reviews: a) B. M. Trost, D. L. Van Vranken, Chem. Rev. 1996,
96, 395-422. b) B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103,
2921-2944. c) A. Alexakis, J. E. Bäckvall, N. Krause, O. Pàmies, M.
Diéguez, Chem. Rev. 2008, 108, 2796-2823. d) S. R. Harutyunyan, T.
den Hartog, K. Geurts, A. J. Minnaard, B. L. Feringa, Chem. Rev. 2008,
108, 2824-2852. e) J. F. Hartwig, L. M. Stanley, Acc. Chem. Res. 2010,
43, 1461-1475. f) W.-B. Liu, J.-B. Xia, S.-L. You, Top. Organomet.
Chem. 2012, 38, 155-207. g) C. Moberg, Top. Organomet. Chem. 2012,
38, 209-234. h) J.-B. Langlois, A. Alexakis, Top. Organomet. Chem.
2012, 38, 235-268. i) P. Tosatti, A. Nelson, S. P. Marsden, Org. Biomol.
Chem. 2012, 10, 3147-3163. j) A. H. Cherney, N. T. Kadunce, S. E.
Reisman, Chem. Rev. 2015, 115, 9587-9652.
[10] a) P. von Matt, A. Pfaltz, Angew. Chem., Int. Ed. Engl. 1993, 32, 566-
568. b) J. Sprinz, G. Helmchen, Tetrahedron Lett. 1993, 34, 1769-1772.
c) J. V. Allen, S. J. Coote, G. J. Dawson, C. G. Frost, C. J. Martin, J. M.
J. Williams, J. Chem. Soc., Perkin Trans. 1 1994, 2065-2072.
[11] The exact reasons for the beneficial effect of TFE are not known at the
present time, but one possibility is that TFE engages in hydrogen-
bonding with the phosphate, activating it as a leaving group in allylic
substitution. Use of TFE in combination with other solvents such as
THF, dioxane, or MeCN gave much lower yields.
[2]
a) Y. Lee, K. Akiyama, D. G. Gillingham, M. K. Brown, A. H. Hoveyda, J.
Am. Chem. Soc. 2008, 130, 446-447. b) K. Akiyama, F. Gao, A. H.
Hoveyda, Angew. Chem., Int. Ed. 2010, 49, 419-423. c) F. Gao, K. P.
McGrath, Y. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 14315-
14320. d) R. Shintani, K. Takatsu, M. Takeda, T. Hayashi, Angew.
Chem., Int. Ed. 2011, 50, 8656-8659. e) B. Jung, A. H. Hoveyda, J. Am.
Chem. Soc. 2012, 134, 1490-1493. f) F. Gao, J. L. Carr, A. H. Hoveyda,
Angew. Chem., Int. Ed. 2012, 51, 6613-6617. g) J. Y. Hamilton, D.
Sarlah, E. M. Carreira, J. Am. Chem. Soc. 2013, 135, 994-997. h) F.
Gao, J. L. Carr, A. H. Hoveyda, J. Am. Chem. Soc. 2014, 136, 2149-
2161. i) M. Sidera, S. P. Fletcher, Nature Chem. 2015, 7, 935-939.
a) T. Miura, M. Shimada, M. Murakami, J. Am. Chem. Soc. 2005, 127,
1094-1095. b) T. Miura, M. Shimada, M. Murakami, Chem. Asian. J
2006, 1, 868-877. For a related process, see: c) M. Shimada, T.
Harumashi, T. Miura, M. Murakami, Chem. Asian. J 2008, 3, 1035-1040.
For reviews of domino carbometalation sequences triggered by the
rhodium-catalyzed addition of organoboron reagents, see: (a) T. Miura,
M. Murakami, Chem. Commun. 2007, 217-224. (b) S. W. Youn, Eur. J.
Org. Chem. 2009, 2597-2605.
[12] M. G. Schrems, A. Pfaltz, Chem. Commun. 2009, 6210-6212.
[13] The absolute configuration of 2a obtained using ligand L5 was
determined by X-ray crystallography, and the absolute configurations of
the remaining products were assigned by analogy. CCDC 1539326
contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge
Crystallographic Centre.
[14] Repeating the experiment of Table 1, entry 7, but in the absence of L6,
gave none of 2a. Instead, 3a was formed in 12% NMR yield, along with
a 10% NMR yield of what appeared to be the product of hydroarylation
of 1a without cyclization.
[3]
[4]
[15] a) J. M. Huggins, R. G. Bergman, J. Am. Chem. Soc. 1981, 103, 3002-
3011. b) A. Yamamoto, M. Suginome, J. Am. Chem. Soc. 2005, 127,
15706-15707. c) M. Daini, A. Yamamoto, M. Suginome, Asian. J. Org.
Chem. 2013, 2, 968-976.
[16] a) M. Murakami, T. Yoshida, S. Kawanami, Y. Ito, J. Am. Chem. Soc.
1995, 117, 6408-6409. b) P.-S. Lin, M. Jeganmohan, C.-H. Cheng,
Chem. Eur. J. 2008, 14, 11296-11299. c) T. Sperger, C. M. Le, M.
Lautens, F. Schoenebeck, Chem. Sci. 2017, 8, 2914-2922.
[5]
[6]
[7]
D. L. Comins, X. Chen, L. A. Morgan, J. Org. Chem. 1997, 62, 7435-
7438.
[17] Sawamura and co-workers have described stereospecific Pd-catalyzed
reactions between allylic esters and arylboronic acids, in which allylic
substitution is proposed to occur by migratory insertion of the alkene
followed by β-oxygen elimination: a) H. Ohmiya, Y. Makida, T. Tanaka,
M. Sawamura, J. Am. Chem. Soc. 2008, 130, 17276-17277. b) H.
Ohmiya, Y. Makida, D. Li, M. Tanabe, M. Sawamura, J. Am. Chem. Soc.
2010, 132, 879-889. c) D. Li, T. Tanaka, H. Ohmiya, M. Sawamura, Org.
Lett. 2010, 12, 3344-3347.
C. Clarke, C. A. Incerti-Pradillos, H. W. Lam, J. Am. Chem. Soc. 2016,
138, 8068-8071.
For related Ni-catalyzed anti-carbometallative cyclizations, see: a) X.
Zhang, X. Xie, Y. Liu, Chem. Sci. 2016, 7, 5815-5820. b) X. Wang, Y.
Liu, R. Martin, J. Am. Chem. Soc. 2015, 137, 6476-6479. c) M.
Börjesson, T. Moragas, R. Martin, J. Am. Chem. Soc. 2016, 138, 7504-
7507.
[18] a) B. M. Trost, M. D. Spagnol, J. Chem. Soc., Perkin Trans 1 1995,
2083-2097. b) Y. Kobayashi, R. Mizojiri, E. Ikeda, J. Org. Chem. 1996,
61, 5391-5399. c) Y. Kobayashi, K. Watatani, Y. Kikori, R. Mizojiri,
Tetrahedron Lett. 1996, 37, 6125-6128.
[8]
Selected examples of enantioselective Ni-catalyzed allylic alkylations or
arylations: a) G. Consiglio, F. Morandini, O. Piccolo, Helv. Chim. Acta
1980, 63, 987-989. b) G. Consiglio, O. Piccolo, L. Roncetti, F.
Morandini, Tetrahedron 1986, 42, 2043-2053. c) T. Hiyama, N. Wakasa,
Tetrahedron Lett. 1985, 26, 3259-3262. d) G. Consiglio, A. Indolese,
Organometallics 1991, 10, 3425-3427. e) A. F. Indolese, G. Consiglio,
Organometallics 1994, 13, 2230-2234. f) U. Nagel, H. G. Nedden, Inorg.
Chim. Acta 1998, 269, 34-42. g) E. Gomez-Bengoa, N. M. Heron, M. T.
Didiuk, C. A. Luchaco, A. H. Hoveyda, J. Am. Chem. Soc. 1998, 120,
7649-7650. h) K.-G. Chung, Y. Miyake, S. Uemura, J. Chem. Soc.,
Perkin Trans 1 2000, 15-18. i) S. Son, G. C. Fu, J. Am. Chem. Soc.
2008, 130, 2756-2757. j) J. D. Shields, D. T. Ahneman, T. J. A. Graham,
A. G. Doyle, Org. Lett. 2014, 16, 142-145. k) Z. Zeng, D. Yang, Y. Long,
X. Pan, G. Huang, X. Zuo, W. Zhou, J. Org. Chem. 2014, 79, 5249-
This article is protected by copyright. All rights reserved.