Inorganic Chemistry
COMMUNICATION
in the separation distance of the amide group from the nitrogen
atom on the imine unit, which is anticipated to participate in the
binding process of the HgII ion. A higher concentration of HgII ions
is required in 2 (Figure S3 in the Supporting Information), relative
to 1, to reach saturation in the electronic absorption titration studies,
which is indicative of the lower binding affinity of 2 for the HgII ion,
in accordance with the lower log Ks value obtained in 2. Although 1
and 2 showed similar color and electronic absorption spectral
changes upon ring opening of the same rhodamine derivative, the
difference in their emission responses demonstrates that such an
energy-transfer process could be regulated by the judicious design of
the rhodamine-containing ligand.
In conclusion, a novel system of a bichromophoric chemo-
sensor, with hybridization of the organic fluorophoric rhodamine
sensing derivative and the luminescent cyclometalated iridium-
(III) complex, has been designed and synthesized. Selective HgII
ion-sensing properties have been studied to show color/electro-
nic absorption spectral changes. More importantly, such HgII ion
binding has been found to modulate the energy-transfer process
from rhodamine 6G to the iridium(III) luminophore upon ring
opening of rhodamine 6G. As a “proof-of-principle” concept, the
present result may open up new avenues for the fundamental
understanding of the photophysical and selective sensory beha-
viors and the design of a new chemosensor system with
hybridization of the organic fluorophoric rhodamine and the
luminescent transition-metal complex.
(5) Valeur, B. Molecular Fluorescence: Principles and Applications;
Wiley-VCH Verlag GmbH: New York, 2001; Chapter 10.
(6) Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997, 119, 7386.
(7) For some reviews and examples, see: (a) Kim, H. N.; Lee, M. H.;
Kim, H. J.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2008, 37, 1465.
(b) Beija, M.; Afonso, C. A. M.; Martinho, J. M. G. Chem. Soc. Rev.
2009, 38, 2410. (c) Quang, D. T.; Kim, J. S. Chem. Rev. 2010, 110, 6280.
(8) Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim, K. M.; Seo, M. S.; Nam,
W.; Yoon, J. J. Am. Chem. Soc. 2005, 127, 10107.
(9) (a) Yang, Y. K.; Yook, K. J.; Tae, J. J. Am. Chem. Soc. 2005,
127, 16760. (b) Zheng, H.; Qian, Z.-H.; Xu, L.; Yuan, F.-F.; Lan, L.-D.;
Xu, J.-G. Org. Lett. 2006, 8, 859. (c) Soh, J. H.; Swamy, K. M. K.; Kim,
S. K.; Kim, S.; Lee, S. H.; Yoon, J. Tetrahedron Lett. 2007, 48, 5966.
(d) Suresh, M.; Shrivastav, A.; Mishra, S.; Suresh, E.; Das, A. Org. Lett.
2008, 10, 3013. (e) Mao, J.; Wang, L.; Dou, W.; Tang, X.; Yan, Y.; Liu,
W. Org. Lett. 2007, 9, 4567. (f) Atanu, J.; Kim, J. S.; Jung, H. S.; Parimal,
K. B. Chem. Commun. 2009, 4417.
(10) (a) Bae, S.; Tae, J. Tetrahedron Lett. 2007, 48, 5389. (b) Lee,
M. H.; Kim, H. J.; Yoon, S.; Park, N.; Kim, J. S. Org. Lett. 2008, 10, 213.
(c) He, G.; Guo, D.; He, C.; Zhang, X.; Zhao, X.; Duan, C. Angew. Chem.,
Int. Ed. 2009, 48, 6132. (d) Jou, M. J.; Chen, Z.; Swamy, K. M. K.; Kim,
H. N.; Kim, H.-J.; Lee, S.-G.; Yoon, J. Chem. Commun. 2009, 7218. (e)
Huang, W.; Wu, D.; Guo, D.; Zhu, X.; He, C.; Meng, Q.; Duan, C. Dalton
Trans. 2009, 2081.
(11) (a) Franzini, R. M.; Kool, E. T. Org. Lett. 2008, 10, 2935.
(b) Yang, X.-F.; Guo, X.-Q.; Zhao, Y.-B. Talanta 2002, 57, 883. (c)
Zhang, W.; Tang, B.; Liu, X.; Liu, Y.; Xu, K.; Ma, J.; Tong, L.; Yang, G.
Analyst 2009, 134, 367.
(12) (a) Lee, M. H.; Kim, H. J.; Yoon, S.; Park, N.; Kim, J. S. Org. Lett.
2008, 10, 213. (b) Suresh, M.; Mishra, S.; Mishra, S. K.; Suresh, E.;
Mandal, A. K.; Shrivastav, A.; Das, A. Org. Lett. 2009, 11, 2740.
(c) Othman, A. B.; Lee, J. W.; Wu, J.-S.; Kim, J. S.; Abidi, P. T.; Strub,
J. M.; Dorsselaer, A. V.; Vicens, J. J. Org. Chem. 2007, 72, 7634. (d) Yuan,
M.; Zhou, W.; Liu, X.; Zhu, M.; Li, J.; Yin, X.; Zheng, H.; Zuo, Z.;
Ouyang, C.; Liu, H.; Li, Y.; Zhu, D. J. Org. Chem. 2008, 73, 5008.
(e) Zhang, X.; Xiao, Y.; Qian, X. Angew. Chem., Int. Ed. 2008, 47, 8025.
(13) For some reviews and examples, see: (a) King, K. A.;
Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc. 1985, 107, 1431.
(b) Dixon, I. M.; Collin, J.-P.; Sauvage, J.-P.; Flamigni, L.; Encinas,
S.; Barigelletti, F. Chem. Soc. Rev. 2000, 29, 385. (c) Lo, K. K. W.; Hui,
W. K.; Chung, C. K.; Tsang, K. H. K.; Ng, D. C. M.; Zhu, N.; Cheung,
K. K. Coord. Chem. Rev. 2005, 29, 1434. (d) Lowry, M. S.; Bernhard,
S. Chem.—Eur. J. 2006, 12, 7970. (e) Flamigni, L.; Barbieri, A.;
Sabatini, C.; Ventura, B.; Barigelletti, F. Top. Curr. Chem. 2007,
281, 143. (f) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq,
F.; Kwong, R.; Tsyba, Z.; Bortz, M.; Mui, B.; Bau, R.; Thompson,
M. E. Inorg. Chem. 2001, 40, 1704. (g) Zhao, Q.; Li, F.; Huang, C.
Chem. Soc. Rev. 2010, 39, 3007. (h) Zhao, Q.; Li, F.; Liu, S.; Yu, M.;
Liu, Z.; Yi, T.; Huang, C. Inorg. Chem. 2008, 47, 9256. (i) Zhao, N.;
Wu, Y.-H.; Wen, H.-M.; Zhang, X.; Chen, Z.-N. Organometallics
2009, 28, 5603. (j) Zhao, N.; Wu, Y.-H.; Shi, L.-X.; Lin, Q.-P.; Chen,
Z.-N. Dalton Trans. 2010, 39, 8288.
(14) (a) Hwang, F.-M.; Chen, H.-Y.; Chen, P.-S.; Liu, C.-S.; Chi, Y.;
Shu, C.-F.; Wu, F.-I.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H. Inorg. Chem.
2005, 44, 1344. (b) Tani, K.; Fujii, H.; Mao, L.; Sakurai, H.; Hirao, T.
Bull. Chem. Soc. Jpn. 2007, 80, 783.
(15) (a) Yam, V. W. W.; Wong, K. M. C.; Zhu, N. J. Am. Chem. Soc.
2002, 124, 6506. (b) Yu, C.; Wong, K. M. C.; Chan, K. H. Y.; Yam,
V. W. W. Angew. Chem., Int. Ed. 2005, 44, 791. (c) Yu, C.; Chan, K. H. Y.;
Wong, K. M. C.; Yam, V. W. W. Proc. Natl. Acad. Sci. U.S.A. 2006,
103, 19657. (d) Yu, C.; Chan, K. H. Y.; Wong, K. M. C.; Yam, V. W. W.
Chem.—Eur. J. 2008, 14, 4577.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details include
b
syntheses and characterizations, photophysical spectra of 1, and
other electronic absorption and emission spectral changes of 1 and
2 upon the addition of a HgII ion and acid. Thismaterialisavailable
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: wongmc@hku.hk.
’ ACKNOWLEDGMENT
K.M.-C.W. acknowledges support from The University of
Hong Kong. The work described in this paper has been
supported by a GRF grant from the Research Grants Council
of Hong Kong Special Administrative Region, China (Project
HKU 7051/07P). We gratefully acknowledge Professor Vivian
Wing-Wah Yam for access to the equipment for photophysical
measurements and for her helpful discussion.
’ REFERENCES
(1) Noelting, E.; Dziewonsky, K. Ber. Dtsch. Chem. Ges. 1905, 38,
3516.
(2) (a) Haugland, R. P. Handbook of Fluorescent Probes and Research
Chemicals, 6th ed.; Molecular Probes, Inc.: Eugene, OR, 1996; p 22.
(b) Beija, M.; Carlos, A. M. A.; Josꢀe, M. G. M. Chem. Soc. Rev. 2009, 38,
2410.
(16) (a) Wong, K. M. C.; Tang, W. S.; Lu, X. X.; Zhu, N.; Yam,
V. W. W. Inorg. Chem. 2005, 44, 1492. (b) Tang, W. S.; Lu, X. X.; Wong,
K. M. C.; Yam, V. W. W. J. Mater. Chem. 2005, 15, 2714. (c) Tang,
R. P. L.; Wong, K. M. C.; Zhu, N.; Yam, V. W. W. Dalton Trans.
2009, 3911.
(3) (a) Goddard, J. P.; Reymond, J. L. Trends Biotechnol. 2004,
22, 363. (b) Li, L. T.; Kracht, J.; Peng, S. Q. Bioorg. Med. Chem. Lett.
2003, 13, 1245. (c) Kruger, R. G.; Dostal, P.; McCafferty, D. G. Chem.
Commun. 2002, 2092.
(4) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.;
Springer: New York, 2006; pp 67ꢀ69.
5335
dx.doi.org/10.1021/ic2006315 |Inorg. Chem. 2011, 50, 5333–5335