Journal of the American Chemical Society
COMMUNICATION
Scheme 1. Use of r-Unsubstituted r-Diazoacetate for
Traceless Catalytic Desymmetrizing Asymmetric Expansion
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details and char-
b
acterization data for new compounds. This material is available
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This work was partially supported by a Grant-in-Aid for
Scientific Research from MEXT (Japan). T.H. and Y.N. thank
a Grant-in Aid for Young Scientists (B) and the Research
Fellowships of JSPS for Young Scientists, respectively.
presumably due to the tendency of these cyclohexanones to
project their silyloxy group in an axial fashion. Accordingly, this
catalytic desymmetrizing asymmetric ring expansion with 4-(tert-
butyldimethyl)silyloxycyclohexanone furnished the cyclohepta-
none 6e as the single expected isomer with 88% ee. In the
reaction with cyclohexanone having 4-alkyl- and 4-silyloxy
groups, a considerable decrease of the enantioselectivity was
observed, although the product 6f was obtained as a single
diastereomer. This strategy could be extended to the use of
3,5-cis-dimethylcyclohexanone to give 6g having three stereo-
genic centers with 58% ee. At last, we also examined the variation
of the R-substituent of diazoacetates, as exemplified in the
reaction with 4-phenylcyclohexanone and 4-silyloxycyclohexa-
none. Irrespective of the substituents attached at the benzylic
position of R-diazoacetates, the ring expansion proceeded to give
the corresponding carbocycles 6h, 6i, 6k, and 6l, respectively,
with high enantioselectivities. It should be noted that R-alkyl-R-
diazoacetate could be utilized as well, giving the cycloheptanone
6j with moderate enantioselectivity.
As a unique application of this catalytic desymmetrizing
asymmetric ring expansion, we turned our attention to the use of
simple R-unsubstituted R-diazoacetate 7 as a substrate (Scheme 1).3b
Ring expansion of 4-phenylcyclohexanone with ethyl diazo-
acetate 7a under the identical reaction conditions furnished
seven-membered cyclic β-keto ester having an R-hydrogen.
While the stereocenter at the R-position generated by the
primary action of the chiral catalyst easily disappeared via the
epimerization, it is strongly anticipated that the stereogenic
center at the remote δ-position imparted by the desymme-
trization would be retained. To confirm this, decarboxylation
of this cyclic β-keto ester 8 (R = Et) was implemented to give
4-phenylcycloheptanone 9 with 75% ee, offering a novel route
for the traceless asymmetric one-carbon homologation of
4-substituted cyclohexanones. Further optimization revealed
that use of benzyl diazoacetate 7 (R = Bn) drastically improved
the enantioselectivity of this desymmetrization, giving cyclo-
heptanone 9 with 97% ee.
’ REFERENCES
(1) For reviews, see: (a) Ye, T.; McKervey, M. A. Chem. Rev. 1994,
94, 1091.(b) Doyle, M. P.; Ye, T.; McKervey, M. A. Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds; John Wiley &
Sons: New York, 1998.
(2) (a) House, H. O.; Grubbs, E. J.; Gannon, W. F. J. Am. Chem. Soc.
1960, 82, 4099. (b) M€uller, E.; Bauer, M. Liebigs Ann. Chem. 1962,
654, 92. (c) Tai, W. T.; Warnhoff, E. W. Can. J. Chem. 1964, 42, 1333. (d)
Mock, W. L.; Hartman, M. E. J. Am. Chem. Soc. 1970, 92, 5767. (e) Mock,
W. L.; Hartman, M. E. J. Org. Chem. 1977, 42, 459. (f) Mock, W. L.;
Hartman, M. E. J. Org. Chem. 1977, 42, 466. (g) Maruoka, K.;
Concepcion, A. B.; Yamamoto, H. J. Org. Chem. 1994, 59, 4725. (h)
Maruoka, K.; Concepcion, A. B.; Yamamoto, H. Synthesis 1994, 1283. (i)
Liu, H.-J.; Yeh, W.-L.; Browne, E. N. C. Can. J. Chem. 1995, 73, 1135. (j)
Yang, S.; Hungerhoff, B.; Metz, P. Tetrahedron Lett. 1998, 39, 2097.
(3) (a) Hashimoto, T.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc.
2009, 131, 6614. (b) Hashimoto, T.; Naganawa, Y.; Maruoka, K. Chem.
Commun. 2010, 46, 6810.
(4) For our related works, see: (a) Hashimoto, T.; Miyamoto, H.;
Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2009, 131, 11280. (b)
Hashimoto, T.; Naganawa, Y.; Kano, T.; Maruoka, K. Chem. Commun.
2007, 5143. (c) Hashimoto, T.; Naganawa, Y.; Maruoka, K. J. Am. Chem.
Soc. 2008, 130, 2434. (d) Hashimoto, T.; Nakatsu, H.; Watanabe, S.;
Maruoka, K. Org. Lett. 2010, 12, 1668. (e) Hashimoto, T.; Nakatsu, H.;
Yamamoto, K.; Watanabe, S.; Maruoka, K. Chem. Asian J. 2011, 6, 607.
(5) (a) Moebius, D. C.; Kingsbury, J. S. J. Am. Chem. Soc. 2009,
131, 878. (b) Wommack, A. J.; Moebius, D. C.; Travis, A. L.; Kingsbury,
J. S. Org. Lett. 2009, 11, 3202.
(6) Acid Catalysis in Modern Organic Synthesis; Yamamoto, H.,
Ishihara, K., Eds.; Wiley-VCH: Weinheim, Germany, 2008.
(7) Li, W.; Wang, J.; Hu, X.; Shen, K.; Wang, W.; Chu, Y.; Lin, L.;
Liu, X.; Feng, X. J. Am. Chem. Soc. 2010, 132, 8532.
(8) (a) Christoffers, J.; Baro, A. Adv. Synth. Catal. 2005, 347, 1473.
(b) Trost, B. M.; Jiang, C. Synthesis 2006, 369.
(9) (a) Riant, O.; Hannedouche, J. Org. Biomol. Chem. 2007, 5, 873.
(b) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853.
In conclusion, we have succeeded in developing the chiral bis-
aluminum Lewis acid-catalyzed asymmetric ring expansion of
cyclohexanones by controlling the stereochemistry of approach-
ing R-substituted R-diazoacetates. By combining this catalytic
asymmetric ring expansion with the desymmetrization of 4-sub-
stituted cyclohexanones, seven-membered carbocyles having two
remote functionalities could be synthesized as a single isomer
with high enantioselectivities. This procedure could also be
extended to the reaction with R-unsubstituted R-diazoacetate,
which led to the establishment of a novel traceless procedure for
the desymmetrization of 4-substituted cyclohexanone via one-
carbon homologation.14
(10) (a) Maruoka, K.; Itoh, T.; Shirasaka, T.; Yamamoto, H. J. Am.
Chem. Soc. 1988, 110, 310. (b) Maruoka, K.; Banno, H.; Yamamoto, H.
J. Am. Chem. Soc. 1990, 112, 7791. (c) Maruoka, K.; Banno, H.;
Yamamoto, H. Tetrahedron: Asymmetry 1991, 2, 663. (d) Maruoka,
K.; Yamamoto, H. Synlett 1991, 793. (e) Maruoka, K.; Concepcion,
A. B.; Yamamoto, H. Bull. Chem. Soc. Jpn. 1992, 65, 3501.
(11) (a) Ishihara, K.; Kobayashi, J.; Inanaga, K.; Yamamoto, H.
Synlett 2001, 394. (b) Li, P.; Yamamoto, H. J. Am. Chem. Soc. 2009,
131, 16628. (c) Son, A. J. R.; Thorn, M. G.; Fanwick, P. E.; Rothwell, I. P.
Organometallics 2003, 22, 2318.
(12) For the use of other bis-aluminum Lewis acid catalysts, see: (a)
Ooi, T.; Takahashi, M.; Maruoka, K. J. Am. Chem. Soc. 1996, 118, 11307.
8836
dx.doi.org/10.1021/ja202070j |J. Am. Chem. Soc. 2011, 133, 8834–8837