D
S. Itabashi et al.
Letter
Synlett
To demonstrate the utility of this highly diastereo-
selective reductive allylation protocol, we chose (–)-castor-
amine (23) as a target compound and we examined its
synthesis (Scheme 5).20 The reaction of lactam (+)-1821 with
Ti(O-i-Pr)4 (5.0 equiv) and diphenylsilane (0.5 equiv), fol-
lowed by addition of the crotylzinc reagent, resulted in the
expected partial reduction to yield product 19 with perfect
stereoselectivity.22 The facial selectivity of the crotylation
was completely controlled by the siloxymethyl group on the
piperidine ring. Crotylation of 19 followed by ring-closing
metathesis then gave the cyclic product 21. After reduction
of the double bond, a 3-furyl moiety was introduced by fol-
lowing Shenvi’s procedure to give 22 in 59% yield as a single
diastereomer.23 Finally, removal of the TBDPS group afford-
ed (–)-castoramine (23), whose physical properties were in
agreement with the reported data.20c
Science Research (BINDS)) from AMED under Grant Number
JP18am0101100.
)(
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
o
nrtogI
f
rmoaitn
References and Notes
(1) For selected recent reviews on amide formation, see:
(a) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97,
2243. (b) Han, S.-Y.; Kim, Y.-A. Tetrahedron 2004, 60, 2447.
(c) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61,
10827. (d) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606.
(e) El-Faham, A.; Albericio, F. Chem. Rev. 2011, 111, 6557.
(f) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
(g) Lanigan, R. M.; Sheppard, T. D. Eur. J. Org. Chem. 2013, 7453.
(h) Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Chem.
Soc. Rev. 2014, 43, 2714.
(2) For a review on nucleophilic addition to amides, see: Pace, V.;
Holzer, W.; Olofsson, B. Adv. Synth. Catal. 2014, 356, 3697.
(3) For a review and a recent example through a thioamide, see:
(a) Murai, T.; Mutoh, Y. Chem. Lett. 2012, 41, 2. (b) Murai, T.;
Mutoh, N. J. Org. Chem. 2016, 81, 8131.
OTBDPS
Ph2SiH2
(0.5 equiv)
Ti(Oi-Pr)4
(5 equiv)
MgCl
(6.0 equiv)
OTBDPS
H
ZnCl2 (3.0 equiv)
N
H
O
N
H
–78 to 0 °C
THF, r.t.;
19 (single diastereomer)
(+)-18
35% (52%, brsm)
(4) For recent examples through iminium triflates, see: (a) Huang,
P.-Q.; Huang, Y.-H.; Xiao, K.-J.; Wang, Y.; Xia, X.-E. J. Org. Chem.
2015, 80, 2861. (b) Wang, A.-E.; Yu, C.-C.; Chen, T.-T.; Liu, Y.-P.;
Huang, P.-Q. Org. Lett. 2018, 20, 999. (c) Chen, H.; Ye, J.-L.;
Huang, P.-Q. Org. Chem. Front. 2018, 5, 943.
(5) (a) Oda, Y.; Sato, T.; Chida, N. Org. Lett. 2012, 14, 950.
(b) Nakajima, M.; Oda, Y.; Wada, T.; Minamikawa, R.; Shirokane,
K.; Sato, T.; Chida, N. Chem. Eur. J. 2014, 20, 17565.
(6) For examples of direct reductive nucleophilic additions to
amides by using Vaska’s complex, see: (a) Xie, L.-G.; Dixon, D. J.
Chem. Sci. 2017, 8, 7492. (b) Fuentes de Arriba, Á. L.; Lenci, E.;
Sonawane, M.; Formery, O.; Dixon, D. J. Angew. Chem. Int. Ed.
2017, 56, 3655.
(7) For direct reductive nucleophilic additions to N-alkoxy amides,
see: (a) Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Angew.
Chem. Int. Ed. 2010, 49, 6369. (b) Yanagita, Y.; Nakamura, H.;
Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Chem. Eur. J. 2013,
19, 678. (c) Shirokane, K.; Wada, T.; Yoritate, M.; Minamikawa,
R.; Takayama, N.; Sato, T.; Chida, N. Angew. Chem. Int. Ed. 2014,
53, 512. (d) Sato, T.; Chida, N. Org. Biomol. Chem. 2014, 12, 3147.
(e) Nakajima, M.; Sato, T.; Chida, N. Org. Lett. 2015, 17, 1696.
(f) Fukami, Y.; Wada, T.; Meguro, T.; Chida, N.; Sato, T. Org.
Biomol. Chem. 2016, 14, 5486.
OTBDPS
OTBDPS
O
Cl
H
Grubbs’ 2nd cat.
(20 mol%)
H
N
EtN(i-Pr)2
N
CH2Cl2
reflux
CH2Cl2, r.t.
O
O
21
60% (2 steps)
OTBDPS
20
OH
1) H2, Pd/C
EtOH
r.t., 97%
H
H
TBAF
N
N
THF, r.t.
2)
Li
75%
O
O
22
O
Et2O
(–)-castoramine (23)
–78 to r.t.
NaBH(OAc)3
59%
single diastereomer
Scheme 5 Application to the total synthesis of (–)-castoramine
In summary, we have established a highly chemoselec-
tive, one-pot, direct reductive allylation of a variety of sec-
ondary amides by using titanium hydride and a diallylic
zinc reagent. The utility of this protocol was demonstrated
by performing a stereocontrolled total synthesis of (–)-cas-
toramine.
(8) When spirocyclic lactam 4 was treated with the Schwartz
reagent, a fully reduced amine was detected as the major prod-
uct.
(9) Sato, M.; Azuma, H.; Daigaku, A.; Sato, S.; Takasu, K.; Okano, K.;
Tokuyama, H. Angew. Chem. Int. Ed. 2017, 56, 1087.
(10) Bower, S.; Kreutzer, K. A.; Buchwald, S. L. Angew. Chem. Int. Ed.
Engl. 1996, 35, 1515.
(11) Hatano, M.; Suzuki, S.; Ishihara, K. J. Am. Chem. Soc. 2006, 128,
9998.
Funding Information
(12) For an example of a titanium hydride-mediated one-pot partial
reduction/intramolecular Henry reaction of a tertiary amide,
see: Jakubec, P.; Hawkins, A.; Felzmann, W.; Dixon, D. J. J. Am.
Chem. Soc. 2012, 134, 17482.
This work was financially supported by KAKENHI (16H01127,
16H00999, 26253001, 18H02549, 18H04231, 18H04379, 18K18462)
and Platform Project for Supporting Drug Discovery and Life Science
Research (Basis for Supporting Innovative Drug Discovery and Life
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–E