L.-L. Cao et al. / Tetrahedron Letters 52 (2011) 2837–2839
2839
2. (a) Jacotot, B.; Banga, J. D.; Pfister, P.; Mehra, M. Br. J. Clin. Pharmacol. 1994, 38,
257; (b) Walsh, T. F.; Toupence, R. B.; Ujjainwalla, F.; Young, J. R.; Goulet, M. T.
Tetrahedron 2001, 57, 5233.
Ph
Pd/C, H2 (1 atm)
+
PhCHO
3. Fischer, E.; Jourdan, F. Ber. Dtsch. Chem. Ges. 1883, 16, 2241.
4. For recent some reviews on synthesis of indoles and substituted indoles, see:
(a) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Chem. Soc. Rev. 2010, 39, 4449; (b)
Gil, C.; Brase, S. J. Comb. Chem. 2009, 11, 175; (c) Barluenga, J.; Rodriguez, F.;
Fananas, F. J. Chem. Asian J. 2009, 4, 1036; (d) Bandini, M.; Eichholzer, A. Angew.
Chem., Int. Ed. 2009, 48, 9608; (e) Metwally, M. A.; Shaaban, S.; Abdel-Wahab, B.
F.; El-Hiti, G. A. Curr. Org. Chem. 2009, 13, 1475; (f) Hajicek, J. Collect. Czech.
Chem. Commun. 2007, 72, 821; (g) Humphrey, G. R.; Kuethe, J. T. Chem. Rev.
2006, 106, 2875; (h) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873; (i)
Agarwal, S.; Cammerer, S.; Filali, S.; Frohner, W.; Knoll, J.; Krahl, M. P.; Reddy, K.
R.; Knolker, H. J. Curr. Org. Chem. 2005, 9, 160.
N
H
CF3CO2H, CH2Cl2
N
H
1a
2a
1a
2a
50.0 mmol
10.0 mmol
2.04 g, 92% yield 10.78 g, 97% yield
Scheme 3. Scale up of reductive alkylation of indole 1a.
5. Selected examples of synthesis of indoles and substituted indoles, see: (a)
Arcadi, A.; Cianci, R.; Ferrara, G.; Marinelli, F. Tetrahedron 2010, 66, 2378; (b)
Boyer, A.; Isono, N.; Lackner, S.; Lautens, M. Tetrahedron 2010, 66, 6468; (c)
Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Perboni, A.; Sferrazza, A.; Stabile, P. Org.
Lett. 2010, 12, 3279; (d) Chiba, S.; Zhang, L.; Sanjaya, S.; Ang, G. Y. Tetrahedron
2010, 66, 5692; (e) Jana, S.; Clements, M. D.; Sharp, B. K.; Zheng, N. Org. Lett.
2010, 12, 3736; (f) Monguchi, Y.; Mori, S.; Aoyagi, S.; Tsutsui, A.; Maegawa, T.;
Sajiki, H. Org. Biomol. Chem. 2010, 8, 3338; (g) Oh, C. H.; Karmakar, S.; Park, H.;
Ahn, Y.; Kim, J. W. J. Am. Chem. Soc. 2010, 132, 1792.
6. Bandini, M.; Umani-Ronchi, A. Catalytic Asymmetric Friedel–Crafts Alkylations;
Wiley-WCH, 2009.
7. Appleton, J. E.; Dack, K. N.; Green, A. D.; Steele, J. Tetrahedron Lett. 1993, 34,
1529.
As illustrated in Scheme 3, the desired product 2a was obtained in
92% yield at 10 mmol scale and in 97% yield at 50 mmol scale,
respectively.
In summary, we have developed an efficient and facile approach
to 2,3-disubstituted indoles via reductive alkylation of simple 2-
substituted indoles with aldehydes or ketones using hydrogen as
a clean and atom economic reductant under ambient pressure.
The main advantages of this route are excellent yields, simple
operation, and purification procedures.
8. Mahadevan, A.; Sard, H.; Gonzalez, M.; McKew, J. C. Tetrahedron Lett. 2003, 44,
4589.
Acknowledgment
9. Campbell, J. A.; Bordunov, V.; Broka, C. A.; Dankwardt, J.; Hendricks, R. T.; Kress,
J. M.; Walker, K. A. M.; Wang, J.-H. Tetrahedron Lett. 2004, 45, 3793.
10. Rizzo, J. R.; Alt, C. A.; Zhang, T. Y. Tetrahedron Lett. 2008, 49, 6749.
11. (a) Rylander, P. N. Hydrogenation Methods; Academic: New York, 1985; (b)
Hudlicky, M. Reductions in Organic Chemistry, second ed; ACS: Washington, DC,
1996.
We are grateful to financial support from National Natural Sci-
ence Foundation of China (J0830415 & 21032003).
Supplementary data
12. General procedure from 2-methyl-3-(
a
-hydroxyalkyl)-indoles
4
to 2,3-
disubstituted indoles 2: compound 4 (2.0 mmol) was dissolved in 10 mL THF,
and PhCO2H (0.2 mmol), 5% Pd/C (30 mg) was added. The mixture was stirred
at room temperature under H2 (1 atm, hydrogen balloon) atmosphere for 12 h,
then the product was purified by flash chromatography on silica gel using
EtOAc/hexanes (1:5) as eluent.
Supplementary data associated with this article can be found, in
13. General procedure from 2-substituted indole 1 to 2,3-disubstituted indoles 2: a
solution of 2-substituted indole 1 (2 mmol) and the aldehyde or ketone 3
References and notes
(2.2 mmol) in CH2Cl2 (10 mL) was added dropwise to
a stirred, ice-cold
1. (a) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger, R. M.;
Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti,
V. J.; Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfieldt,
J. J. Med. Chem. 1988, 31, 2235; (b) Nicolaou, K. C.; Pfefferkorn, J. A.; Roecker, A.
J.; Cao, G.-Q.; Barluenga, S.; Mitchell, H. J. J. Am. Chem. Soc. 2000, 122, 9939; (c)
Kleeman, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substances,
fourth ed; Thieme: New York, 2001.
solution of TFA (3.0 mmol) and 5% Pd/C (30 mg) in CH2Cl2 (5 mL) under H2
(1 atm, hydrogen balloon) atmosphere. The mixture was stirred at 0 °C and
monitored by TLC until completed (4–8 h). After evaporation of the solvent
under reduced pressure, the product was purified by flash chromatography on
silica gel using EtOAc/hexanes (1:5) as eluent.