2828
X.-Y. Zhou et al. / Tetrahedron Letters 52 (2011) 2826–2829
Table 3
Supplementary data
Asymmetric hydrogenation of simple ketonesa
Supplementary data associated with this article can be found, in
O
OH
Pd(OCOCF3)2/L7
+
H2
R1
R2
Salicylic Acid (10 mol%)
TFE, rt, 11-16 h
R1
R2
∗
(1 atm)
References and notes
1
2
1. (a) Blaser, H.-U.; Pugin, B.; Spindler, F. In Applied Homogeneous Catalysis With
Organometallic Compounds; Cornils, B., Herrmann, W. A., Eds., second ed.;
Wiley-VCH: Weinheim, Germany, 2000. Chapter 3.3.1; (b)Comprehensive
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer:
New York, 1999; (c)The Handbook of Homogeneous Hydrogenation; Vries, J. G.,
Elsevier, C. J., Eds.; Wiley-VCH: Weinheim, Germany, 2007.
Entry
R1/R2
Yieldb (%)
Eec (%)
1
2
3
4
5
6
7
8
C6H5/CH3 (1a)
4-F-C6H4/CH3 (1b)
C6H5/Et (1c)
C6H5/n-Pr (1d)
C6H5/n-Bu (1e)
C6H5/i-Pr (1f)
C6H5/t-Bu (1g)
C6H5/C6H5CH2CH2 (1h)
C6H5/C6H5CH2C(CH3)2 (1i)
C6H5/Cyclohexyl (1j)
n-Decanyl/CH3 (1k)
93
84
94
85
99
81
93
85
93
96
83
67 (R)
59 (R)
72 (R)
71 (R)
69 (R)
71 (R)
88 (R)
59 (R)
72 (R)
70 (R)
10 (R)
2. Ru-catalyzed hydrogenation of ketones, see: (a) Ohkuma, T.; Ooka, H.;
Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2675; (b)
Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.
1995, 117, 7652; (c) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R.
J. Am. Chem. Soc. 1996, 118, 2521; (d) Noyori, R.; Hashiguchi, S. Acc. Chem. Res.
1997, 30, 97; (e) Xie, J.-H.; Wang, L.-X.; Fu, Y.; Zhu, S.-F.; Fan, B.-M.; Duan, H.-F.;
Zhou, Q.-L. J. Am. Chem. Soc. 2003, 125, 4404; (f) Sandoval, C. A.; Ohkuma, T.;
Muñiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490; (g) Lei, A.; Wu, S.; He,
M.; Zhang, X. J. Am. Chem. Soc. 2004, 126, 1626; (h) Genov, D. G.; Ager, D. J.
Angew, Chem., Int. Ed. 2004, 43, 2816; (i) Huang, H.; Okuno, T.; Tsuda, K.;
Yoshimura, M.; Kitamura, M. J. Am. Chem. Soc. 2006, 128, 8716; (j) Ohkuma, T.;
Utsumi, N.; Tsutsumi, K.; Murata, K.; Sandoval, C.; Noyori, R. J. Am. Chem. Soc.
2006, 128, 8724; (k) Hems, W. P.; Groarke, M.; Zanotti-Gerosa, A.; Grasa, G. A.
Acc. Chem. Res. 2007, 40, 1340; (l) Xie, J.-H.; Zhou, Q.-L. Acc. Chem. Res. 2008, 41,
581; (m) Kadyrov, R.; Koenigs, R. M.; Brinkmann, C.; Voigtlaender, D.; Rueping,
M. Angew, Chem., Int. Ed. 2009, 48, 7556.
9
10
11d
a
Conditions: 1 atm of H2, 0.25 mmol ketone, Pd(OCOCF3)2 (2 mol %), (R)-C4-
TunePhos (2.4 mol %), 2 mL TFE, rt.
b
Isolated yield.
Determined by HPLC or GC.
The reaction time: 48 h and the enantioselectivity was determined by HPLC in
c
d
the form of benzoate ester.
3. Rh-catalyzed hydrogenation of ketones, see: (a) Hauptman, E.; Shapiro, R.;
Marshall, W. Organomettallics 1998, 17, 4976; (b) Kuroki, Y.; Sakamaki, Y.; Iseki,
K. Org. Lett. 2001, 3, 457; (c) Jones, M. D.; Raja, R.; Thomas, J. M.; Johnson, B. F.
G.; Lewis, D. W.; Rouzaud, J.; Harris, K. D. M. Angew, Chem., Int. Ed. 2003, 42,
4326; (d) Liu, D.; Gao, W.; Wang, C.; Zhang, X. Angew, Chem., Int. Ed. 2005, 44,
1687; (e) Matharu, D. S.; Morris, D. J.; Kawamoto, A. M.; Clarkson, G. J.; Wills, M.
Org. Lett. 2005, 7, 5489; (f) Klingler, F. D. Acc. Chem. Res. 2007, 40, 1367; (g) Oki,
H.; Oura, I.; Nakamura, T.; Ogata, K.; Fukuzawa, S. Tetrahedron: Asymmetry
2009, 20, 2185.
4. Ir-catalyzed hydrogenation of ketones, see: (a) Zhang, X.; Taketomi, T.;
Yoshizumi, T.; Kumobayashi, H.; Akutagawa, S.; Mashima, K.; Takaya, H. J.
Am. Chem. Soc. 1993, 115, 3318; (b) Ohkuma, T.; Utsumi, N.; Watanabe, M.;
Tsutsumi, K.; Arai, N.; Murata, K. Org. Lett. 2007, 9, 2565; (c) Xie, J.-B.; Xie, J.-H.;
Liu, X.-Y.; Kong, W.-L.; Li, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 4538.
5. Os-catalyzed hydrogenation of ketones, see: (a) Baratta, W.; Ballico, M.;
Chelucci, G.; Siega, K.; Rigo, P. Angew, Chem., Int. Ed. 2008, 47, 4362; (b) Baratta,
W.; Ballico, M.; Baldino, S.; Chelucci, G.; Herdtweck, E.; Siega, K.; Magnolia, S.;
Rigo, P. Chem. Eur. J. 2008, 14, 9148; (c) Baratta, W.; Barbato, C.; Magnolia, S.;
Siega, K.; Rigo, P. Chem. Eur. J. 2010, 16, 3201; (d) Baratta, W.; Fanfoni, L.;
Magnolia, S.; Siega, K.; Rigo, P. Eur. J. Inorg. Chem. 2010, 1419.
6. Fe-catalyzed hydrogenation of ketones, see: (a) Gaillard, S.; Renaud, J.-L.
ChemSusChem 2008, 1, 505; (b) Morris, R. H. Chem. Soc. Rev. 2009, 38, 2282.
7. Cu-catalyzed asymmetric hydrogenation of ketones, see: (a) Shimizu, H.;
Nagasaki, I.; Matsumura, K.; Sayo, N.; Saito, T. Acc. Chem. Res. 2007, 40, 1385;
(b) Shimizu, H.; Igarashi, D.; Kuriyama, W.; Yusa, Y.; Sayo, N.; Saito, T. Org. Lett.
2007, 9, 1655; (c) Shimizu, H.; Nagano, T.; Sayo, N.; Saito, T.; Ohshima, T.;
Mashima, K. Synlett 2009, 3143.
8. (a) Negishi, E. Handbook of Organopalladium Chemistry for Organic Synthesis;
Wiley: Hoboken, NJ, 2002; (b) Tsuji, J. Palladium Reagents and Catalysis; John
Wiley & Sons: Chichester, UK, 2004; (c) Heck, R. F. Pd Reagents in Organic
Synthesis; Academic: New York, 1985; (d) Tietze, L. F.; Ila, H.; Bell, H. P. Chem.
Rev. 2004, 104, 3453.
9. For other groups’ work on Pd-catalyzed asymmetric hydrogenation, see: (a)
Abe, H.; Amii, H.; Uneyama, K. Org. Lett. 2001, 3, 313; (b) Nanayakkara, P.;
Alper, H. Chem. Commun. 2003, 2384; (c) Suzuki, A.; Mae, M.; Amii, H.;
Uneyama, K. J. Org. Chem. 2004, 69, 5132; (d) Tsuchiya, Y.; Hamashima, Y.;
Sodeoka, M. Org. Lett. 2006, 8, 4851.
10. For our group’s work on Pd-catalyzed asymmetric hydrogenation, see: (a)
Wang, Y.-Q.; Lu, S.-M.; Zhou, Y.-G. Org. Lett. 2005, 7, 3235; (b) Wang, Y.-Q.;
Zhou, Y.-G. Synlett 2006, 1189; (c) Wang, Y.-Q.; Lu, S.-M.; Zhou, Y.-G. J. Org.
Chem. 2007, 72, 3729; (d) Wang, Y.-Q.; Yu, C.-B.; Wang, D.-W.; Wang, X.-B.;
Zhou, Y.-G. Org. Lett. 2008, 10, 2071; (e) Yu, C.-B.; Wang, D.-W.; Zhou, Y.-G. J.
Org. Chem. 2009, 74, 5633; (f) Wang, D.-S.; Chen, Q.-A.; Li, W.; Yu, C.-B.; Zhou,
Y.-G.; Zhang, X. J. Am. Chem. Soc. 2010, 132, 8909; (g) Chen, M.-W.; Duan, Y.;
Chen, Q.-A.; Wang, D.-S.; Yu, C.-B.; Zhou, Y.-G. Org. Lett. 2010, 12, 5075; (h)
Zhou, X.-Y.; Bao, M.; Zhou, Y.-G. Adv. Synth. Catal. 2011, 353, 84.
and functionalized ketones.9–12 The reaction temperature and H2
pressure had no dramatic impact on enantioselectivity of product
2a.
Then, several commercially available chiral ligands were also
examined under the above optimized conditions, as summarized
in Table 2. P,N-ligand L2, monophosphine ligand MOP L3 and elec-
tron-withdrawing bisphosphine ligand Difluorphos L4 had almost
no catalytic activity (Table 2, entries 2–4). (S)-BINAP L5 gave 48%
conversion and 65% ee. The best result was achieved with (R)-C4-
TunePhos L7, 67% ee and full conversion was observed (entry 7).
Under the optimized conditions, a variety of substituted simple
ketones 1 were hydrogenated, as shown in Table 3. In most cases,
the products were obtained in full conversions and moderate to
good enantioselectivities. Substitution of the aromatic ring in the
ketones has a detrimental effect on the selectivity and enantiose-
lectivity. Substrates bearing the electron-donating p-methyl or p-
methoxy group in the benzene ring of aromatic ketones led to a
significant amount of racemic trifluoroethyl ether as byproduct,
which may be formed via the acid catalyzed etherification of the
corresponding alcohols and solvent trifluoroethanol. Aromatic ke-
tone 1b with electron-deficient fluoro group (entry 2) could be
hydrogenated smoothly, the enantioselectivity decreased to 59%.
Alkyl phenyl ketones 1c–1i can be hydrogenated smoothly with
59–88% ee (entries 3–10), the bulky pivalophenone 1g gave the
highest 88% ee (entry 7). To probe the generality of the catalytic
system, the hydrogenation of dialkyl ketone 1k was also examined
(entry 11), the reaction was completed in 48 h, affording the corre-
sponding product 2k with full conversion but poor enantioselectiv-
ity (Determined by HPLC in the form of benzoate ester).
In summary, a homogeneous Pd-catalyzed asymmetric hydro-
genation of simple ketones activated by catalytic amount of
Brønsted acid was successfully developed using the Pd(OCOCF3)2/
(R)-C4-TunePhos as catalyst with up to 88% ee. In order to provide
the mechanism understanding to rational design of new asymmet-
ric palladium catalysts, the role of salicylic acid and TFE in the reac-
tion is under progress.
11. Yang, Q.; Shang, G.; Gao, W.; Deng, J.; Zhang, X. Angew. Chem., Int. Ed. 2006, 45,
3832.
12. Rubio-Perez, L.; Perez-Flores, F. J.; Sharma, P.; Velasco, L.; Cabrera, A. Org. Lett.
2009, 11, 265.
13. Raja, R.; Thomas, J. M.; Jones, M. D.; Johnson, B. F. G.; Vaughan, D. E. W. J. Am.
Chem. Soc. 2003, 125, 14982.
14. Goulioukina, N. S.; Bondarenko, G. N.; Bogdanov, A. V.; Gavrilov, K. N.;
Beletskaya, I. P. Eur. J. Org. Chem. 2009, 510.
Acknowledgments
We are grateful to the financial support from National Science
Foundation of China (20872140), National Basic Research Program
(2010CB833300) and Chinese Academy of Sciences.