ORGANIC
LETTERS
2011
Vol. 13, No. 14
3706–3709
Shorter and Modular Synthesis of
Hemicryptophane-tren Derivatives
Bastien Chatelet, Elina Payet, Olivier Perraud, Pascal Dimitrov-Raytchev,
ꢀ
Laure-Lise Chapellet, Veronique Dufaud, Alexandre Martinez,* and Jean-Pierre Dutasta*
ꢀ
Laboratoire de Chimie, CNRS, Ecole Normale Superieure de Lyon, 46 Allee d’Italie,
ꢀ
ꢀ
F-69364 Lyon, France
alexandre.martinez@ens-lyon.fr; jean-pierre.dutasta@ens-lyon.fr
Received May 19, 2011
ABSTRACT
Hemicryptophanes are host molecules with many applications as supramolecular catalysts or in ion selective recognition. A very convenient and
efficient modular approach for the synthesis of hemicryptophane-tren (tren, tris(2-aminoethyl)-amine) derivatives has been developed. For
instance, hemicryptophane 1 was synthesized at the gram scale in four steps from vanillyl alcohol compared to the previous seven-step
procedure. The size, shape, and functionalities of the molecular cavity were also easily modified.
The efficient and versatile synthesis of molecular con-
tainers is one of the key aspects of supramolecular
chemistry.1 The cryptophane hosts, which are constructed
from two cyclotriveratrylene (CTV) units, can encapsulate
a wide variety of guests and have remarkable binding
properties toward neutral or charged guests and efficient
chiral recognition properties.2 Recently improved syn-
thetic routes for cryptophanes, involving fewer steps and
higher yields, have been reported. In particular Rousseau
et al.3 and Dmochowski et al.4 developed respectively a
scalable synthesis of cryptophane-111 and a shorter synth-
esis of tribsubstituted cryptophane-A derivatives. The
hemicryptophanes5 are ditopic host molecules and were
found to be a novel class of efficient supramolecular
catalysts,6 selective hosts for ammonium,5a ion pairs,7
C60 fullerene,8 and enantioselective carbohydrate receptors.9
They led to the design of novel molecular mechanical com-
ponents as propellers10 or gyroscopes.11 We have previously
described the synthesis of hemicryptophane 1 (Scheme 1),
which contains a CTV unit, providing a rigid scaffold with a
lipophilic cavity, and a C3-symmetrical ligand derived from
tris(2-aminoethyl)-amine (tren).12 Supramolecular ligands
combining these two features have been used to complex
(6) Martinez, A.; Dutasta, J.-P. J. Catal. 2009, 267, 188–192.
(7) (a) Le Gac, S.; Jabin, I. Chem.;Eur. J. 2008, 14, 548–557. (b)
Perraud, O.; Robert, V.; Martinez, A.; Dutasta, J.-P. Chem.;Eur. J.
2011, 17, 4177–4182.
(8) Wang, L.; Wang, G.-T.; Zhao, X.; Jiang, X.-K.; Li, Z.-T. J. Org.
Chem. 2011, 76, 3531–3535.
(1) (a) Kirby, A. J. Angew. Chem., Int. Ed. Engl. 1996, 35, 707–724.
(b) Sanders, J. K. M. Chem.;Eur. J. 1998, 4, 1378–1383. (c) Lehn, J.-M.
Rep. Prog. Phys. 2004, 67, 245–249. (d) Yoshizawa, M.; Klosterman,
J. K.; Fujita, M. Angew. Chem., Int. Ed. 2009, 48, 3418–3438.
(2) Brotin, T.; Dutasta, J.-P. Chem. Rev. 2009, 109, 88–130.
(9) Perraud, O.; Martinez, A.; Dutasta, J.-P. Chem. Commun. 2011,
47, 5861–5863.
(10) (a) Martinez, A.; Robert, V.; Gornitzka, H.; Dutasta, J.-P.
Chem.;Eur. J. 2010, 16, 520–527. (b) Martinez, A.; Guy, L.; Dutasta,
J.-P. J. Am. Chem. Soc. 2010, 132, 16733–16734.
(11) Khan, N. S.; Perez-Aguilar, J. M.; Kaufmann, T.; Hill, P. A.;
Taratula, O.; Lee, O.-S.; Carroll, P. J.; Saven, J. G.; Dmochowski, I. J.
J. Org. Chem. 2011, 76, 1418–1424.
(12) Dimitrov Raytchev, P.; Perraud, O.; Aronica, C.; Martinez, A.;
Dutasta, J.-P. J. Org. Chem. 2010, 75, 2099–2102.
ꢀ
(3) Traore, T.; Delacour, L.; Garcia-Argote, S.; Berthault, P.;
Cintrat, J.-C.; Rousseau, B. Org. Lett. 2010, 12, 960–962.
(4) Taratula, O.; Hill, P. A.; Bai, Y.; Khan, N. S.; Dmochowski, I. J.
Org. Lett. 2011, 13, 1414–1417.
(5) (a) Canceill, J.; Collet, A.; Gabard, J.; Kotzyba-Hibert, F.; Lehn,
J.-M. Helv. Chim. Acta 1982, 65, 1894–1897. (b) Smeets, J. W. H.;
Coolen, H. K. A. C.; Zwikker, J. W.; Nolte, R. J. M. Recl. Trav. Chim.
Pays-Bas 1989, 108, 215–218. (c) Rapenne, G.; Crassous, J.; Collet, A.;
Echegoyen, L.; Diederich, F. Chem. Commun. 1999, 1121–1122. (d)
Gosse, I.; Dutasta, J.-P.; Perrin, M.; Thozet, A. New J. Chem. 1999, 23,
545–548. (e) Gautier, A.; Mulatier, J.-C.; Crassous, J.; Dutasta, J.-P.
Org. Lett. 2005, 7, 1207–1210.
(13) Makita, Y.; Sugimoto, K.; Furuyoshi, K.; Ikeda, K.; Fujiwara,
S.; Shin-ike, T.; Ogawa, A. Inorg. Chem. 2010, 49, 7220–7222.
r
10.1021/ol201355t
Published on Web 06/10/2011
2011 American Chemical Society