10.1002/ejoc.201701690
European Journal of Organic Chemistry
COMMUNICATION
Xiao, L.-W. Ye, Chem. Sci. 2014, 5, 4057-4064; d) F. Pan, S. Liu, C. Shu,
R.-K. Lin, Y.-F. Yu, J.-M. Zhou, L.-W. Ye, Chem. Commun. 2014, 50,
10726-10729; e) C.-H. Shen, L. Li, W. Zhang, S. Liu, C. Shu, Y.-E. Xie,
Y.-F. Yu, L.-W. Ye, J. Org. Chem. 2014, 79, 9313−9318; f) L.-Q. Yang,
K.-B. Wang, C.-Y. Li, Eur. J. Org. Chem. 2013, 2775–2779; g) Y. Minko,
M. Pasco, L. Lercher, M. Botoshansky, I. Marek, Nature 2012, 490, 522-
526; h) R. B. Dateer, K. Pati, R.-S. Liu, Chem. Commun. 2012, 48, 7200-
7202; i) P. W. Davies, A. Cremonesi, N. Martin, Chem. Commun. 2011,
47, 379-381; j) C.-F. Xu, M. Xu, Y.-X. Jia, C.-Y. Li, Org. Lett. 2011, 13,
1556-1559; k) A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S.
N. Karad, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 15372-15375; l) Z. F.
Al-Rashid, W. L. Johnson, R. P. Hsung, Y. Wei, P.-Y. Yao, R. Liu, K.
Zhao, J. Org. Chem. 2008, 73, 8780-8784.
because it indicates clearly that the role of the ZnI2 catalyst is the
activation of the ynamide partner.
Conclusions
In summary, among different catalytic systems tested, including
transition metal-based catalysts and Lewis acids, we found that
ZnI2 was able to efficiently catalyze the syn hydroalkoxylation of
internal ynamides with 1,3-diones. Advantageously, this
transformation could be performed in various solvents. In a
general manner, reactions proceeded smoothly at room
temperature giving the adducts in good yields and as E-isomers
exclusively. As shown by the scope investigation, various
functional groups either on the ynamides or the 1,3-diones were
well tolerated. This transformation was successfully transposed to
the hydroarylation of ynamide with an electron-rich arene. This
result seems to indicate that ZnI2 activates the ynamides to trigger
the hydroalkoxylation. Further studies on the reaction mechanism
and the reactivity of adducts are currently undergoing in our
laboratory.
[3]
[4]
For selected references of reactions involving an oxetene formation, see:
a) L. You, Z. F. Al-Rashid, R. Figueroa, S. K. Ghosh, G. Li, T. Lu, R. P.
Hsung, Synlett 2007, 1656-1662; b) K. C. M. Kurtz, R. P. Hsung, Y.
Zhang, Org. Lett. 2006, 8, 231-234.
For other relevant transformations, see: a) H. Liu, Y. Yang, J. Wu, X.-N.
Wang, J. Chang, Chem. Commun. 2016, 52, 6801-6804; L. Chen, Y.-M.
Cui, Z. Xu, J. Cao, Z.-J. Zheng, L.-W. Xu Chem. Commun. 2016, 52,
11131-11134; c) S. Bhunia, C.-J. Chang, R.-S. Liu, Org. Lett. 2012, 14,
5522-5525; d) J. Oppenheimer, W. L. Johnson, M. R. Tracey, R. P.
Hsung, P.-Y. Yao, R. Liu, K. Zhao, Org. Lett. 2007, 9, 2361-2364.
a) H. Huang, L. Tang, Y. Xi, G. He, H. Zhu, Tetrahedron Lett. 2016, 57,
1873-1876; b) S. Xu, J. Liu, D. Hu, X. Bi; Green Chem. 2015, 17, 184-
187; c) N. Ghosh, S. Nayak, A. K. Sahoo, Chem. Eur. J. 2013, 19, 9428-
9433; d) G. Compain, K. Jouvin, A. Martin-Mingot, G. Evano, J. Marrot,
S. Thibaudeau, Chem. Commun. 2012, 48, 5196-5198; e) X. Jin, K.
Yamaguchi, N. Mizuno, Chem. Lett. 2012, 41, 866-867.
[5]
Experimental Section
General procedure for the addition of 1,3-diones to terminal
ynamides: In a 5 mL Schlenk flask under nitrogen were added in turn ZnI2
(8.0 mg, 0.0125 mmol, 5 mol%), the ynamide (0.5 mmol, 1 equiv.), 1,3-
diketone derivatives (0.5 mmol, 1 equiv.) and DCM (3 mL). The reaction
mixture was allowed to stir at 25 or 40 °C for the indicated reaction time.
Volatiles were removed under reduced pressure and the crude residue
was purified by silica gel flash chromatography using petroleum ether and
ethyl acetate as eluent to give the pure desired product.
[6]
[7]
[8]
S. Kramer, J. L. H. Madsen, M. Rottländer, T. Skrydstrup, Org. Lett. 2010,
12, 2758-2761.
D. L. Smith, W. R. F. Goundry, H. W. Lam, Chem. Commun. 2012, 48,
1505-1507.
a) A. M. Cook, C. Wolf, Angew. Chem. 2016, 128, 2982-2986; Angew.
Chem. Int. Ed. 2016, 55, 2929-2933; b) L. Hu, S. Xu, Z. Zhao, Y. Yang,
Z. Peng, M. Yang, C. Wang, J. Zhao, J. Am. Chem. Soc. 2016, 138,
13135-13138
[9]
B. Peng, X. Huang, L.-G. Xie, N. Maulide, Angew. Chem. 2014, 126,
8718-8721; Angew. Chem. Int. Ed. 2014, 53, 8718-8721.
[10] During the preparation of the manuscript, it was reported a trans addition
of MeOH to ynamides as a side reaction of palladium-catalysed reduction
of ynamide using EtOH as hydrogenating agent: A. Siva Reddy, K. C. K.
Swamy, Angew. Chem. 2017, 129, 7088-7092; Angew. Chem. Int. Ed.
2017, 56, 6984-6988.
Acknowledgements ((optional))
This work was supported by the Ministère de l'enseignement
supérieur et de la recherche (L.G. Ph.D. grant), ECM (R.P. ATER
grant), AMU and the CNRS. We thank Dr. Christophe Chendo and
Dr. Valérie Monnier for mass spectrometry analyses (Spectropole,
Fédération des Sciences Chimiques de Marseille). We
acknowledge Dr. Julie Broggi for useful comments on this
manuscript.
[11] a) J. A. Mulder, R. P. Hsung, M. O. Frederick, M. R. Tracey, C. A. Zificsak,
Org. Lett. 2002, 4, 1383-1386; b) N. P. Grimster, D. A. A. Wilton, L. K. M.
Chan, C. R.A. Godfrey, C. Green, D. R. Owen, M. J. Gaunt, Tetrahedron
2010, 66, 6429-6436.
[12] a) M. O. Frederick, R. P. Hsung, R. H. Lambeth, J. A. Mulder, M. R.
Tracey, Org. Lett. 2003, 5, 2663-2666; b) K. C. M. Kurtz, M. O. Frederick,
R. H. Lambeth, J. A. Mulder, M. R. Tracey, R. P. Hsung, Tetrahedron
2006, 62, 3928-3938.
Keywords: Hydroalkoxylation • Ynamide • 1,3-Dione • Lewis
[13] For early reports with ynamines, see: a) J. Ficini, C. Barbara,
Tetrahedron Lett. 1966, 7, 6425-6429; b) J. Ficini, N. Lumbroso-Bader,
J. Pouliquen, Tetrahedron Lett. 1968, 9, 4139-4142;
acid • Enamine
[1]
a) G. Evano, C.Theunissen, M. Lecomte, Aldrichimica Acta 2015, 48,
59−70; b) X.-N. Wang, H.-S. Yeom, L.-C. Fang, S. He, Z.-X. Ma, B. L.
Kedrowski, R. P. Hsung, Acc. Chem. Res. 2014, 47, 560-578; c), K. A.
DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P. Hsung,
Chem. Rev. 2010, 110, 5064-5106; d) G. Evano, A. Coste, K. Jouvin,
Angew. Chem. 2010, 122, 2902-2921; Angew. Chem. Int. Ed. 2010, 49,
2840–2859; e) C. A. Zificsak, J. A. Mulder, R. P. Hsung, C.
Rameshkumar, L.-L. Wei, Tetrahedron 2001, 57, 7575-7606.
[14] A. Siva Reddy, A. L. S. Kumari, S. Saha, K. C. K. Swamy, Adv. Synth.
Catal. 2016, 358, 1625-1638.
[15] a) H. Clavier, A. Lepronier, N. Bengobesse-Mintsa, D. Gatineau, H.
Pellissier, L. Giordano, A. Tenaglia, G. Buono, Adv. Synth. Catal. 2013,
355, 403-408; b) H. Clavier, G. Buono, Chem. Rec. 2017, 17, 399-414.
[16] L. V. Graux, H. Clavier, G. Buono, ChemCatChem 2014, 6, 2544-2548.
[17] P. Starkov, J. T. Moore, D. C. Duquette, B. M. Stoltz, I. Marek, J. Am.
Chem. Soc. 2017, 139, 9615-9620.
[2]
For selected references of oxidation, see: a) F. Pan, X.-L. Li, X.-M. Chen,
C. Shu, P.-P. Ruan, C.-H. Shen, X. Lu, L.-W. Ye, ACS Catal. 2016, 6,
6055−6062; b) H. Huang, L. Tang, Q. Liu, Y. Xi, G. He, H. Zhu, Chem.
Commun. 2016, 52, 5605-5608; c) L. Li, C. Shu, B. Zhou, Y.-F. Yu, X.-Y.
[18] For an example of Au-catalyzed isomerization of enamides, see: M.
Sriram, Y. Zhu, A. M. Camp, C. S. Day, A. C. Jones, Organometallics
2014, 33, 4157-4164.
This article is protected by copyright. All rights reserved.