3222
M. Lachia et al. / Tetrahedron Letters 52 (2011) 3219–3222
B. Angew. Chem., Int. Ed. 2010, 49, 486–488; (g) den Hartog, T.; Rudolph, A.;
Macia, B.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2010, 132, 14349–
14351; (h) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051–3060; (i)
Doyle, M. P. Angew. Chem., Int. Ed. 2009, 48, 850–852; (j) Johansson, C. C. C.;
Bremeyer, N.; Ley, S. V.; Owen, S. C.; Smith, S. C.; Gaunt, M. J. Angew. Chem., Int.
Ed. 2006, 45, 6024–6028.
phthalimide as the nucleophile. This reactant furnished the desired
cyclopropane 7l in 52% yield from 11, compared to the substitution
product 8 obtained with the iodo compound 2 (Table 3, entry d and
Table 1, entry c, respectively). Other nucleophiles successfully led
to the desired three-membered ring products as exemplified in en-
tries e and f with pyrrolidone and diethyl phosphite. However, the
reaction with oxygen-centered nucleophiles such as sodium meth-
oxide failed to give the desired product, probably due to competing
elimination reactions.
3. (a) Childs, R. F.; Johnson, A. W. J. Chem. Soc. 1966, 1950–1955; (b) Lavilla, R.;
Coll, O.; Nicolàs, M.; Sufi, B. A.; Torrents, J.; Bosch, J. Eur. J. Org. Chem. 1999, 2,
2997–3003. and references cited therein; (c) Afarinkia, K.; Mahmood, F.
Tetrahedron Lett. 2000, 41, 1287–1290.
4. Joshi, R. A.; Ravindranathan, T. Indian J. Chem. 1984, 23B, 260–262.
5. Atta, A. K.; Pathak, T. J. Org. Chem. 2009, 74, 2710–2717.
6. Beaudegnies, R.; De Mesmaeker, A.; Mallinger, A.; Baalouch, M.; Goetz, A.
Tetrahedron Lett. 2010, 51, 2741–2744.
7. Knochel, P.; Chou, T.-S.; Chen, H. G.; Yeh, M. C. P.; Rozema, M. J. J. Org Chem.
1989, 54, 5202–5204.
8. Nagano, H.; Kuwahara, R.; Yokoyama, F. Tetrahedron 2007, 63, 8810–8814.
9. Devos, A.; Remion, J.; Frisque-Hesbain, A.-M.; Colens, A.; Ghosez, L. J. Chem. Soc.,
Chem. Commun. 1979, 1180–1181.
In conclusion, we have reported the use of ethyl-2-(2-chloro-
ethyl)acrylate 11 as an
a-cyclopropylester cation synthon, which
offers clear improvements in terms of chemoselectivity as well as
increased isolated yields compared to the iodo analog 2 that we
used initially.6 The very good accessibility of 11 as well as its abil-
ity to react efficiently with a broad variety of carbon-, nitrogen-,
sulfur- and phosphorous-centered nucleophiles allowed successful
applications of this strategy to the preparation of cyclopropyl ester
targets difficult to access by standard methods. We are now gener-
alizing the described method to other Michael acceptors to synthe-
size a variety of highly substituted small rings.
10.
a
-Chloro acetates are known to produce cyclopropane derivatives by Michael
addition on electron deficient olefins, as reported in the McCoy reaction;
McCoy, L. L. J. Am. Chem. Soc. 1958, 80, 6568. In our case, the reaction of
a-
chloro acetates with 2 or 11 led to a mixture of products which were not
characterized.
11. In the case of methyl cyanoacetate as the nucleophile, the desired
cyclopropane derivative is obtained along with side products which might
result from proton exchange (Scheme 4, equation E). The intramolecular
proton exchange through
a six-membered ring between the negatively
References and notes
charged oxygen atom of the ester enolate and the hydrogen atom flanked by
both electron withdrawing groups (cyano and ester) could be a competitive
pathway depending on the acidity of this proton and the conformation adopted
by the ester enolate.
1. (a) Elliott, M.; Janes, N. F. Chem. Soc. Rev. 1978, 7, 473–505; (b) Donaldson, W. A.
Tetrahedron 2001, 57, 8589–8627; (c) Wessjohann, L. A.; Brandt, W.; Thiemann,
T. Chem. Rev. 2003, 103, 1625–1648; (d) Brackmann, F.; de Meijere, A. Chem.
Rev. 2007, 107, 4493–4537.
2. (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103,
977–1050; (b) Charette, A. B.; Beauchemin, A. Org. React. 2001, 58, 1–395; (c)
Davies, H. M. L.; Antoulinakis, E. G. Org. React. 2001, 57, 1–326; (d)
Kulinkovitch, O. G.; de Meijere, A. Chem. Rev. 2000, 100, 2789–2834; (e)
Pellissier, H. Tetrahedron 2008, 64, 7041–7095; (f) Goudreau, S. R.; Charette, A.
12. For Michael addition reactions followed by 1,3-prototropic rearrangement see
for example; (a) Hermann, J. L.; Kieczykowski, G. R.; Romanet, R. F.;
Schlessinger, R. H. Tetrahedron Lett. 1973, 14, 4715–4718; (b) Alvarez-Ibarra,
C.; Csaky, A. G.; Ortega, E. M.; Jesus de la Morena, M.; Quiroga, M. L. Tetrahedron
Lett. 1997, 38, 4501–4502.