Table 2 Synthesis of 4 from 2 by the action of magnesium ethoxide
one-step reaction, which takes place at ambient temperature
and under mild reaction conditions. Straightforward de-
esterification of
2 provides important biologically active
a-alkyl-a-fluoromethylenebisphosphonic acids 3. Alkoxide–
induced carbon–phosphorus bond cleavage of 2 provides a new
way to a-fluorophosphonates 4.
Entry
2, R
Temp. (◦C)
Time (h)
4, Yield (%)a
Support of this work at the Institute of Organic Chemistry
by the Grant Agency of the Czech Republic (203/08/P310) and
the Academy of Sciences of the Czech Republic (Research Plan
AVZ40550506) is gratefully acknowledged. Work at the University
of Southern California (USA) was supported by the NIH grant,
5-U19-CA105010 and the Loker Hydrocarbon Research Institute.
1
2
2a, Me
145
90
22
18
4a, 26b
4c, 5c
2c,
CH2 CHCH2
2e, n-Bu
2f, n-C7H15
2i, Bn
3
4
5
150
155
100
20
44
20
4e, 61
4f, 62
4i, 50
a Isolated yield. b 4a was obtained as inseparable mixture with triethylphos-
phate. c Number of side products were formed.
Notes and references
1 V. D. Romanenko and V. P. Kukhar, Chem. Rev., 2006, 106, 3868.
2 (a) G. K. S. Prakash, M. Z. Zibinsky, T. G. Upton, B. A. Kashemirov, C.
E. McKenna, K. Oertell, M. F. Goodman, V. K. Batra, L. C. Pederson,
W. A. Beard, D. D. Shock, S. H. Wilson and G. A. Olah, Proc. Natl.
Acad. Sci. U. S. A., 2010, 107, 15693; (b) A. C. Sucato, T. G. Upton, B. A.
Kashemirov, J. Osuna, K. Oertell, W. A. Beard, S. H. Wilson, J. Florian,
A. Warshel, C. E. McKenna and M. F. Goodman, Biochemistry, 2008,
47, 870; (c) C. A. Sucato, T. G. Upton, B. A. Kashemirov, V. K. Batra,
V. Martinek, Y. Xiang, W. A. Beard, L. C. Pedersen, S. H. Wilson, C. E.
McKenna, J. Florian, A. Warshel and M. F. Goodman, Biochemistry,
2007, 46, 461; (d) C. E. McKenna, B. A. Kashemirov, T. G. Upton, V. K.
Batra, M. F. Goodman, L. C. Pedersen, W. A. Beard and S. H. Wilson,
J. Am. Chem. Soc., 2007, 129, 15412; (e) S. D. Taylor, F. Mirzaei and S.
L. Bearne, J. Org. Chem., 2008, 73, 1403; (f) T. R. Burke, M. S. Smyth,
M. Nomizu, A. Otaka and P. P. Roller, J. Org. Chem., 1993, 58, 1336;
(g) A. V. Shipitsin, L. S. Victorova, E. A. Shirokova, N. B. Dyatkina,
L. E. Goryunova, R. S. Beabealashvilli, C. J. Hamilton, S. M. Roberts
and A. Krayevsky, J. Chem. Soc., Perkin Trans. 1, 1999, 1039.
3 A. Singh, R. A. Holmes, M. Farhangi, W. A. Volkert, A. Williams, L.
M. Stringham and A. R. Ketring, J. Nucl. Med., 1989, 30, 1814.
4 (a) V. Chandrasekhar, T. Senapati, E. C. Sanudo and R. Clerac, Inorg.
Chem., 2009, 48, 6198; (b) D. Ostovic, C. Stelmach and B. Hulshizer,
Pharm. Res., 1993, 10, 470; (c) E. Gumienna-Kontecka, R. Silvagni, R.
Lipinski, M. Lecouvey, F. C. Marincola, G. Crisponi, V. M. Nurchi, Y.
Leroux and H. Kozlowski, Inorg. Chim. Acta, 2002, 339, 111.
5 B. Nowack, Water Res., 2003, 37, 2533.
DMF and nucleophilic enough to undergo the desired alkylation
reactions unlike the lithium salt of 1.
De-esterification of selected phosphonates 2 using literature
conditions21 gave a-alkyl-a-fluoromethylenebisphosphonic acids,
3 in excellent yields (3a, R = Me, 97%; 3i, R = Bn, 92%). This two
step protocol starting from 1 represents the method of choice for
the synthesis of phosphonic acids 3.
A possibility of cleavage of one of the phosphoryl groups of
bisphosphonates 2 to a-fluorophosphonates 4 was also investi-
gated. This transformation would be analogous to the reduc-
tive cleavage of the sulfonyl group in fluorinated sulfones by
sodium amalgam or magnesium metal in the presence of protic
solvent.12,22 Alkoxide induced P–CF3 bond cleavage has been
reported in the nucleophilic trifluoromethylations using diethyl
trifluoromethylphosphonate.23 It was expected that a nucleophile
such as alkoxide anion would attack one phosphorus atom of
2, followed by the cleavage of carbon–phosphorus bond to give
a-fluorophosphonates 4. Reaction of 2e with EtONa (20 eq)
in EtOH at ambient temperature gave only traces of expected
diethyl (1-fluoropentyl)phosphonate (4e) after 17 h. At 50 ◦C
under otherwise identical conditions the product conversions
were 55% after 5 h and 30% after 17 h with the formation of
many side products. Reaction of 2e with Mg (10 eq) in MeOH
at ambient temperature provided a mixture of methyl and ethyl
bisphosphonates after 1.5 h and a mixture of methyl and ethyl (1-
fluoropentyl)phosphonate after 17 h. Finally, it was decided to use
magnesium ethoxide in ethanol24 to avoid the formation of mixture
of products by transesterification and the results are summarized
in Table 2. It was found that excess (10 eq) of magnesium ethoxide
and elevated temperature are needed to achieve moderate to good
yields of fluorophosphonates 4. Careful temperature control plays
a crucial role. For example, with the benzyl derivative 2i, the
optimal temperature was found to be 100 ◦C. Below 90 ◦C the
reaction was very sluggish, while above 120 ◦C there was a number
of side-products formed. For alkyl derivatives 2a, 2e, 2f the optimal
temperature was 145–155 ◦C. This process represents novel and
interesting C–P bond cleavage of fluorinated bisphosphonates to
give fluorophosphonates 4, however, it is not as efficient as some
other literature methods.11,12,25
6 D. B. Berkowitz and M. Bose, J. Fluorine Chem., 2001, 112, 13.
7 (a) G. M. Blackburn, Chem,. Ind. (London), 1981, 134; (b) G. M.
Blackburn, D. A. England and F. Kolkmann, J. Chem. Soc., Chem.
Commun., 1981, 930; (c) G. M. Blackburn, D. E. Kent and F.
Kolkmann, J. Chem. Soc., Chem. Commun., 1981, 1188.
8 K. S. Chunikhin, A. A. Kadyrov, P. V. Pasternak and N. D. Chkanikov,
Russ. Chem. Rev., 2010, 79, 371.
9 D. B. Berkowitz, D. Bhuniya and G. Peris, Tetrahedron Lett., 1999, 40,
1869.
10 (a) D. J. Burton, R. Takei and S. Shin-Ya, J. Fluorine Chem., 1981, 18,
197; (b) W. Qiu and D. J. Burton, Tetrahedron Lett., 1996, 37, 2745; (c) T.
Yokomatsu, K. Suemune, T. Murano and S. Shibuya, J. Org. Chem.,
1996, 61, 7207; (d) X. Zhang and D. J. Burton, Tetrahedron Lett., 2000,
41, 7791.
11 R. Waschbu¨sch, J. Carran and P. Savignac, J. Chem. Soc., Perkin Trans.
1, 1997, 1135.
12 D. B. Berkowitz, M. Bose and N. G. Asher, Org. Lett., 2001, 3, 2009.
13 (a) B. Iorga, F. Eymery and P. Savignac, Tetrahedron Lett., 1998, 39,
4477; (b) B. I. Martynov, V. B. Sokolov, A. Yu,. Aksinenko, T. V.
Goreva, T. A. Epishina and A. N. Pushin, Russ. Chem. Bull., 1998, 47,
1983.
14 (a) A. Jung, S. Bisaz, P. Bartholdi and H. Fleisch, Calcif. Tissue Res.,
1973, 13, 27; (b) E. Van Beek, C. Lowik, I. Que and S. Papapoulos, J.
Bone Miner. Res., 1996, 11, 1492; (c) F. H. Ebetino, M. D. Francis, M.
J. Rogers and R. G. G. Russell, Rev. Contemp. Pharmacother., 1998, 9,
233; (d) A. Jung, S. Bisaz and H. Fleisch, Calcif. Tissue Res., 1973, 11,
269.
In summary,
a
new route to a-alkyl-a-fluoro-
methylenebisphosphonates 2 starting from commercial tetraethyl
fluoromethylenebisphosphonate (1) and alkyl halides has
been developed. This protocol is operationally very simple
15 K. L. Kavanagh, K. Guo, J. E. Dunford, X. Wu, S. Knapp, F. H.
Ebetino, M. J. Rogers, R. G. G. Russell and U. Oppermann, Proc. Natl.
Acad. Sci. U. S. A., 2006, 103, 7829.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 4035–4038 | 4037
©