10.1002/chem.201804246
Chemistry - A European Journal
COMMUNICATION
Furthermore, sterically demanding natural products pinanamine
and myrtanylamine were also efficiently borylated as was
unprotected tryptamine containing a free N–H group (3w–y).
From natural amino acids derived protected leucinol and lysine
afforded the corresponding products 3z and 3aa in moderate
yield. As mentioned previously, the Katritzky salts are formed via
a simple and efficient condensation reaction, which can also be
carried out at room temperature in CH2Cl2, if acetic acid is used
as a Brønsted acid catalyst.[19] However, in some cases isolation
can be difficult if the Katritzky salt does not precipitate. Thus, we
sought to develop a one-pot procedure in which the Katritzky
salt is generated and reacted in situ. As a solvent mixture of
CH2Cl2 and DMA was already successful for borylation during
the optimization process, we were confident that such a protocol
could be realized. Pleasingly, we found that simply through the
addition of a solution of B2cat2 in DMA to a pre-formed Katritzky
salt solution in CH2Cl2, followed by the standard borylation
procedure, the desired product 3a could be isolated in 76% yield
directly from amine 4a (Scheme 4). Compared to isolation of
Katritzky salt 2a (70%)[13] and successive borylation with our
method, the one-pot borylation even offers a slight increase in
yield over two steps (76% vs. 64%). This one-pot protocol is
significant for enabling the first direct deaminative borylation of
primary amines.
Keywords: borylation • deaminative strategy • visible light •
electron-donor-acceptor • DFT calculations
[1]
[2]
D. G. Hall in Boronic Acids (Ed.: D. G. Hall), Wiley‐VCH Verlag GmbH
& Co. KGaA, 2011, pp. 1‒133.
For selected examples on the synthesis of aliphatic boronates, see: a)
C. Yang, Z. Zhang, H. Tajuddin, C. Wu, J. Liang, J. Liu, Y. Fu, M.
Czyzewska, P. G. Steel, T. B. Marder, L. Liu, Angew. Chem. Int. Ed.
2012, 51, 528; Angew. Chem. 2012, 124, 543; b) H. Li, L. Wang, Y.
Zhang, J. Wang, Angew. Chem. Int. Ed. 2012, 51, 2943; Angew. Chem.
2012, 124, 2997; c) A. S. Dudnik, G. C. Fu, J. Am. Chem. Soc. 2012,
134, 10693; d) C. W. Liskey, J. F. Hartwig, J. Am. Chem. Soc. 2012,
134, 12422; e) T. C. Atack, R. M. Lecker, S. P. Cook, J. Am. Chem.
Soc. 2014, 136, 9521; f) T. C. Atack, S. P. Cook, J. Am. Chem. Soc.
2016, 138, 6139; g) S.-C. Ren, F.-L. Zhang, J. Qi, Y.-S. Huang, A.-Q.
Xu, H.-Y. Yan, Y.-F. Wang, J. Am. Chem. Soc. 2017, 139, 6050; h) K.
M. Logan, S. R. Sardini, S. D. White, M. K. Brown, J. Am. Chem. Soc.
2018, 140, 159.
[3]
[4]
For selected reviews on the use of aliphatic boronates in synthesis,
see: a) D. Leonori, V. K. Aggarwal, Angew. Chem. Int. Ed. 2015, 54,
1082; Angew. Chem. 2015, 127, 1096; b) C. Sandford, V. K. Aggarwal,
Chem. Commun. 2017, 53, 5481.
For selected reviews of the use of aliphatic boronates in medicinal
chemistry, see: a) R. Smoum, A. Rubinstein, V. M. Dembitsky, M.
Srebnik, Chem. Rev. 2012, 112, 4156; b) P. C. Trippier, C. McGuigan,
Med. Chem. Commun., 2010, 1, 183; W. Q. Yang, X. M. Gao, B. H.
Wang, Med. Res. Rev. 2003, 23, 346.
[5]
[6]
a) G. Yan, D. Huang, X. Wu, Adv. Synth. Catal. 2018, 360, 1040; b) Y.
Cheng, C. Mück-Lichtenfeld, A. Studer, J. Am. Chem. Soc. 2018, 140,
6221.
a) C. Li, J. Wang, L. M. Barton, S. Yu, M. Tian, D. S. Peters, M. Kumar,
A. W. Yu, K. A. Johnson, A. K. Chatterjee, M. Yan, P. S. Baran,
Science 2017, 356, 1045; b) D. Hu, L. Wang, P. Li, Org. Lett. 2017, 19,
2770; c) A. Fawcett, J. Pradeilles, Y. Wang, T. Mutsuga, E. L. Myers, V.
K. Aggarwal, Science 2017, 357, 283; for the use of aromatic NHPI
ester, see: d) L. Candish, M. Teders, F. Glorius, J. Am. Chem. Soc.
2017, 139, 7440.
Scheme 4. One-pot borylation procedure via in situ generation of Katritzki
salt 2a, performed on a 0.3 mmol scale. [a] Performed on a 2.5 mmol scale.
In summary, we report the deaminative borylation of primary
aliphatic amines via the use of Katritzky salts as acceptors in
EDA complexes. The reaction proceeds under mild visible light-
mediated conditions and requires only a coordinating solvent
and no further catalysts or additives. We propose a radical chain
mechanism initiated by an EDA complex based on experimental
and computational studies. The method efficiently converts
primary, benzylic and secondary amines into the corresponding
borylated products. The synthetic value of this methodology is
further demonstrated through the late-stage functionalization of
natural products and drug molecules. Notably, direct amine to
boronate interconversion can also be performed in a one-pot
process, whereby the Katritzky salt is not isolated but reacted in
situ. Further studies into the full synthetic potential and use of
Katritzky salts as acceptors in EDA complexes are ongoing in
our laboratory.
[7]
[8]
a) E. Scott, F. Peter, J. Sanders, Appl. Microbiol. Biotechnol. 2007, 75,
751; b) T. P. T. Cushnie, B. Cushnie, A. J. Lamb, Int. J. Antimicrob.
Agents 2014, 44, 377; c) N. A. McGrath, M. Brichacek, J. T. Njardarson,
J. Chem. Educ. 2010, 87, 1348.
a) J. Bariwal, E. Van der Eycken, Chem. Soc. Rev. 2013, 42, 9283; b)
V. Froidevaux, C. Negrell, S. Caillol, J.-P. Pascault, B. Boutevin, Chem.
Rev. 2016, 116, 14181; c) P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev.
2016, 116, 12564; d) Q. Wang, Y. Su, L. Li, H. Huang, Chem. Soc. Rev.
2016, 45, 1257.
[9]
For selected examples, see: a) Y. Ma, C. Song, W. Jiang, G. Xue, J. F.
Cannon, X. Wang, M. B. Andrus, Org. Lett. 2003, 5, 4635; b) W. Erb, A.
Hellal, M. Albini, J. Rouden, J. Blanchet, Chem. Eur. J. 2014, 20, 6608;
c) A. M. Mfuh, J. D. Doyle, B. Chhetri, H. D. Arman, O. V. Larionov, J.
Am. Chem. Soc. 2016, 138, 2985; d) H. Zhang, S. Hagihara, K. Itami,
Chem. Eur. J. 2015, 21, 16796; e) C. H. Basch, K. M. Cobb, M. P.
Watson, Org. Lett. 2016, 18, 136; f) J. Hu, H. Sun, W. Cai, X. Pu, Y.
Zhang, Z. Shi, J. Org. Chem. 2016, 81, 14; g) S. Aichhorn, R. Bigler, E.
L. Myers, V. K. Aggarwal, J. Am. Chem. Soc. 2017, 139, 9519.
[10] During the preparation of this manuscript, Aggarwal et al. published on
the deaminative borylation of alkylamines: J. Wu, L. He, A. Noble, V. K.
Aggarwal, J. Am. Chem. Soc. 2018, DOI: 10.1021/jacs.8b07103.
[11] A. R. Katritzky, U. Gruntz, D. H. Kenny, M. C. Rezende, H. Sheikh, J.
Chem. Soc. Perkin Trans. 1 1979, 430; for an early example of
Katritzky salts in single electron transfer processes, see: A. R. Katritzky,
M. A. Kashmiri, G. Z. de Ville, R. C. Patel, J. Am. Chem. Soc. 1983,
105, 90.
Acknowledgements
This work was supported by the Fonds der Chemischen
Industrie (F.S.), the Deutsche Forschungsgemeinschaft (SFB
858, F.S.-K.) and the Alexander von Humboldt Foundation
(M.J.J.). We also thank Philipp Pflüger for experimental support
and Lena Pitzer for helpful discussions.
This article is protected by copyright. All rights reserved.