10.1002/anie.201901447
Angewandte Chemie International Edition
Int. Ed. 2018, 57, 13266; e) F. Wang, P. Xu, F. Cong, P. Tang, Chem.
Sci. 2018, 9, 8836; f) J. Liu, Y. Wei, P. Tang, J. Am. Chem. Soc. 2018,
140, 15194.
In conclusion, we had developed the first example of a
photoredox-catalyzed
and
copper-promoted
trifluoromethoxylation of arenediazonium tetrafluoroborates with
trifluoromethyl arylsulfonate (TFMS) as the trifluoromethoxylation
reagent. This new method took advantage of visible-light
photoredox catalysis to generate the aryl radical under mild
conditions and merged it with copper-promoted selective
trifluoromethoxylation reaction. This method tolerated a wide
range of functional groups and was applicable to late-stage
trifluoromethoxylation of complex small molecules. Furthermore,
mechanistic studies indicated that proposed Cs[Cu(OCF3)2]
intermediate might be generated, which could lead to the
development of a new trifluoromethoxylation reaction in the future.
[5] a) A. E. Feiring, J. Org. Chem. 1979, 44, 2907; b) J. Salomé, C.
Mauger, S. Brunet, V. Schanen, J. Fluorine Chem. 2004, 125, 1947.
[6] W. A. Sheppard, J. Org. Chem. 1964, 29, 1.
[7] a) M. Kuroboshi, K. Suzuki, T. Hiyama, Tetrahedron Lett. 1992, 33,
4173; b) K. Kiyoshi, T. Yoichiro, S. Kazundo, K. Manabu, H.
Tamejiro, Bull. Chem. Soc. Jpn. 2000, 73, 471; c) M. Kuroboshi, K.
Kanie, T. Hiyama, Adv. Synth. Catal. 2001, 343, 235.
[8] a) T. Umemoto, K. Adachi, S. Ishihara, J. Org. Chem. 2007, 72, 6905;
b) R. Koller, K. Stanek, D. Stolz, R. Aardoom, K. Niedermann, A.
Togni, Angew. Chem. 2009, 121, 4396; Angew. Chem. Int. Ed. 2009,
48, 4332; c) K. N. Hojczyk, P. Feng, C. Zhan, M. Y. Ngai, Angew.
Chem. 2014, 126, 14787; Angew. Chem. Int. Ed. 2014, 53, 14559; d)
A. Liang, S. Han, Z. Liu, L. Wang, J. Li, D. Zou, Y. Wu, Y. Wu,
Chem. Eur. J. 2016, 22, 5102; e) P. Feng, K. N. Lee, J. W. Lee, C.
Zhan, M. Y. Ngai, Chem. Sci. 2016, 7, 424; f) Q. Zhang, J. Hartwig,
Chem. Commun. 2018, 54, 10124.
Acknowledgements
[9] C. Huang, T. Liang, S. Harada, E. Lee, T. Ritter, J. Am. Chem. Soc.
2011, 133, 13308.
[10] J. Liu, C. Chen, L. Chu, Z. Chen, X. Xu, F. Qing, Angew. Chem. 2015,
127, 12005; Angew. Chem. Int. Ed. 2015, 54, 11839.
[11] a) Q. Zhang, A. T. Brusoe, V. Mascitti, K. D. Hesp, D. C. Blakemore,
J. T. Kohrt, J. F. Hartwig, Angew. Chem. 2016, 128, 9910; Angew.
Chem. Int. Ed. 2016, 55, 9758; b) M. Zhou, C. Ni, Z. He, J. Hu, Org.
Lett. 2016, 18, 3754; c) C. Chatalova-Sazepin, M. Binayeva, M.
Epifanov, W. Zhang, P. Foth, C. Amador, M. Jagdeo, B. R. Boswell,
G. M. Sammis, Org. Lett. 2016, 18, 4570; d) S. Krishanmoorthy, S. D.
Schnell, H. Dang, F. Fu, G. K. S. Prakash, J. Fluorine Chem. 2017,
203, 130.
This work was supported by the National Key Research and De-
velopment Program of China (2016YFA0602900), NFSC
(21522205, 21672110), the Natural Science Foundation of Tianjin
(Grant No. 18JCJQJC47000), and the Fundamental Research
Funds for the Central Universities.
Conflict of interest
The authors declare no conflict of interest.
[12] M. Zhou, C. Ni, Y. Zeng, J. Hu, J. Am. Chem. Soc. 2018, 140, 6801.
[13] a) W. Zheng, C. A. Morales-Rivera, J. W. Lee, P. Liu, M. Ngai,
Angew. Chem. 2018, 130, 9793; Angew. Chem. Int. Ed. 2018, 57,
9645; b) B. J. Jelier, P. F. Tripet, E. Pietrasiak, I. Franzoni, G. Jeschke,
A. Togni, Angew. Chem. 2018, 130, 13980; Angew. Chem. Int. Ed.
2018, 57, 13784; c) W. Zheng, J. W. Lee, C. A. Morales-Rivera, P.
Liu, M. Ngai, Angew. Chem. 2018, 130, 13991; Angew. Chem. Int. Ed.
2018, 57, 13795.
Keywords: trifluoromethoxylation · trifluoromethyl arylsulfonate ·
photoredox · copper · synthetic methods
[1] a) F. Leroux, P. Jeschke, M. Schlosser, Chem. Rev. 2005, 105, 827; b)
M. Shimizu, T. Hiyama, Angew. Chem. 2005, 117, 218; Angew.
Chem. Int. Ed. 2005, 44, 214; c) B. Menteau, S. Pazenok, J. P. Vors, F.
R. Leroux, J. Fluorine Chem. 2010, 131, 140; d) G. Landelle, A.
Panossian, F. R. Leroux, Curr. Top. Med. Chem. 2014, 14, 941.
[14] a) A. A. Kolomeitsev, M. Vorobyev, H. Gillandt, Tetrahedron Lett.
2008, 49, 449; b) C. Zhang, D. A. Vicic, Organometallics, 2012, 31,
7812.
[15] For selected reviews on metallaphotocatalysis, see a) J. Xuan, W. J.
Xiao, Angew. Chem. 2012, 124, 6934; Angew. Chem. Int. Ed. 2012, 51,
6828; b) X. Lang, J. Zhao, X. Chen, Chem. Soc. Rev. 2016, 45, 3026;
c) D. C. Fabry, M. Rueping, Acc. Chem. Res. 2016, 49, 1969; d) M. N.
Hopkinson, A. Tlahuext-Aca, F. Glorius, Acc. Chem. Res. 2016, 49,
2261; e) K. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116,
10035; f) J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evan, D. W.
C. MacMillan, Nat. Rev. Chem. 2017, 1, 0052; g) E. B. McLean,; A.
Lee, Tetrahedron 2018, 74, 4881.
[2] For selected examples for the synthesis of trifluoromethoxylated
compounds, see a) K. Stanek, R. Koller, A. Togni, J. Org. Chem. 2008,
73, 7678; b) O. Marrec, T. Billard, J. Vors, S. Pazenok, B. R. Langlois,
Adv. Synth. Catal. 2010, 352, 2831; c) O. Marrec, T. Billard, J. Vors,
S. Pazenok, B. R. Langlois, J. Fluorine Chem. 2010, 131, 200; d) J.
Liu, X. Xu, F. Qing, Org. Lett. 2015, 17, 5048; e) C. Chen, P. Chen, G.
Liu, J. Am. Chem. Soc. 2015, 137, 15648; f) S. Chen, Y. Huang, X.
Fang, H. Li, Z. Zhang, T. S. Andy Hor, Z. Weng, Dalton Trans. 2015,
44, 19682; g) G. Zha, J. Han, X. Hu, H. Qin, W. Fang, C. Zhang,
Chem. Commun. 2016, 52, 7458; (h) J. N. Brantley, A. V. Samant, F.
D.Toste, ACS Cent. Sci. 2016, 2, 341; (i) X. Qi, P. Chen, G. Liu,
Angew. Chem. 2017, 129, 9620; Angew. Chem. Int. Ed. 2017, 56,
9517; j) W. Huang, X. Wan, Q. Shen, Angew. Chem. 2017, 129,
12148; Angew. Chem. Int. Ed. 2017, 56, 11986; (k) C. Chen, Y. Luo,
L. Fu, P. Chen, Y. Lan, G. Liu, J. Am. Chem. Soc. 2018, 140, 1207; (l)
W. Zhang, J. Chen, J. Lin, J. Xiao, Y. Gu, iScience 2018, 5, 110; (m)
H. Kondo, M. Maeno, K. Hirano, N. Shibata, Chem. Commun. 2018,
54, 5522; (n) C. Chen, P. M. Pflüger, P. Chen, G. Liu, Angew. Chem.
2019, 131, 2414; Angew. Chem. Int. Ed. 2019, 58, 2392.
[3] For recent reviews on trifluoromthoxylation reactions, see a) A. Tlili,
F. Toulgoat, T. Billard, Angew. Chem. 2016, 128, 11900; Angew.
Chem. Int. Ed. 2016, 55, 11726; b) T. Besset, P. Jubault, X.
Pannecoucke, T. Poisson, Org. Chem. Front. 2016, 3, 1004; c) K. N.
Lee, J. W. Lee, M. Ngai, Tetrahedron 2018, 74, 7127; d) X. Zhang, P.
Tang, Sci. Chi. Chem. 2018, DOI: 10.1007/s11426-018-9402-x.
[4] a) S. Guo, F. Cong, R. Guo, L. Wang, P. Tang, Nat. Chem. 2017, 9,
546; b) X. Jiang, Z. Deng, P. Tang, Angew. Chem. 2018, 130, 298;
Angew. Chem. Int. Ed. 2018, 57, 292; c) F. Cong, Y. Wei, P. Tang,
Chem. Commun. 2018, 54, 4473; d) H. Yang, F. Wang, X. Jiang, Y.
Zhou, X. Xu, P. Tang, Angew. Chem. 2018, 130, 13450; Angew. Chem.
[16] a) F. Mo, G. Dong, Y. Zhang, J. Wang, Org. Biomol. Chem. 2013, 11,
1582; b) D. P. Hari, B. König, Angew. Chem. 2013, 125, 4832; Angew.
Chem. Int. Ed. 2013, 52, 4734.
[17] a) Y. Ye, M. S. Sanford, J. Am. Chem. Soc. 2012, 134, 9034; b) A.
Casitas, X. Ribas, Chem. Sci. 2013, 4, 2301; c) P. S. Fier, J. Luo, J. F.
Hartwig, J. Am. Chem. Soc. 2013, 135, 2552; d) H. Zhang, B. Yao, L.
Zhao, D. Wang, B. Xu, M. Wang, J. Am. Chem. Soc. 2014, 136, 6326;
e) X. Tan, Z. Liu, H. Shen, P. Zhang, Z. Zhang, C. Li, J. Am. Chem.
Soc. 2017, 139, 12430; f) Guo, S.; AbuSalim, D. I.; Cook, S. P. J. Am.
Chem. Soc. 2018, 140, 12378. g) C. Le, T. Q. Chen, T. Liang, P.
Zhang, D. W. C. MacMillan, Science 2018, 360, 1010; h) R. Mao, A.
Frey, J. Balon, X. Hu, Nat. Cat. 2018, 1, 120; i) Y. Liang, X. Zhang,
D. W. C. MacMillan, Nature 2018, 559, 83; j) L. Liu, Z. Xi, Chin. J.
Chem. 2018, 36, 1213.
[18] Interestingly, the possible Cs[Cu(OCF3)2] generated by mixing CsF,
CuOTf and TFMS could not quench the excited photocatalyst.
[19] We took a lot of effort to get the x-ray crystal structure or ESI-MS of
proposed structure Cs[Cu(OCF3)2], but we failed due to the easily
decomposition of this intermediate. For selected examples for other
anionic Cu intermediates, see: a) S. Okamoto, S. Tominaga, N. Saino,
K. Kase, K. Shimoda, J. Organomet. Chem. 2005, 690, 6001; b) R.
4
This article is protected by copyright. All rights reserved.