3312
R. W. Allcock et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3307–3312
6. (a) Rose, G. M.; Hopper, A.; De Vivo, M.; Tehim, A. Curr. Pharm. Des. 2005, 11,
3329; (b) Reneerkens, O. A.; Rutten, K.; Steinbusch, H. W.; Blokland, A.;
Prickaerts, J. Psychopharmacology (Berl.) 2009, 202, 419.
7. Giembycz, M. A.; Field, S. K. Drug Des. Develop. Ther. 2010, 4, 147.
8. Chung, K. F. Eur. J. Pharmacol. 2006, 533, 110.
23. Lee, M. E.; Markowitz, J.; Lee, J. O.; Lee, H. FEBS Lett. 2002, 530, 53.
24. Burgin, A. B.; Magnusson, O. T.; Singh, J.; Witte, P.; Staker, B. L.; Bjornsson, J. M.;
Thorsteinsdottir, M.; Hrafnsdottir, S.; Hagen, T.; Kiselyov, A. S.; Stewart, L. J.;
Gurney, M. E. Nat. Biotechnol. 2010, 28, 63.
25. (a) Tsuchuja, T.; Sashida, H.; Konoshita, A. Chem. Pharm. Bull. 1983, 31, 4568;
(b) Tsuchuja, T.; Sashida, H. J. Chem. Soc., Chem. Commun. 1980, 1109.
26. The isolated catalytic domains of PDE3A, PDE4B and PDE5A were used in our
primary assays and the inhibitory potencies found for ibudilast differ from
those reported in earlier studies,11b,c which used different constructs. We
evaluated compound activity against the PDE core catalytic domains in our
foundational studies because sensitivity to inhibitors can be influenced by the
nature of the N-terminal regulatory regions, especially for the PDE4 enzymes.
These are encoded by four genes (PDE4A–D) that each give rise to multiple
isoforms.22a,27 The isoforms are categorised as ‘long’, ‘short’ or ‘supershort’
according to the presence or absence of regulatory modules, upstream
conserved regions 1 and 2 (UCR1, UCR2), located between a unique isoform-
specific N-terminal sequence and the core catalytic domain.22a The UCR
modules transduce the functional consequences of regulatory phosphorylation
by kinases such as PKA,22a but we have recently shown that ibdudilast is one of
a group of inhibitors that can interact with a ‘gating sequence’ in UCR2,
switching the PDE4 conformational state to one in which the inhibitor-
occupied catalytic pocket is capped by UCR2.28 Such conformational switching
can lead to profound changes in inhibitor affinities and is sensitive to both
phosphorylation and partner protein binding.29 Thus, for the archetypal PDE4
inhibitor, rolipram, conformational interchange can switch PDE4 enzymes
between low-affinity and high-affinity rolipram binding states (LARBS/HARBS)
with IC50s in the micromolar and nanomolar ranges, respectively.22a
27. Conti, M.; Richter, W.; Mehats, C.; Livera, G.; Park, J. Y.; Jin, C. J. Biol. Chem. 2003,
278, 5493.
28. (a) Terry, R.; Cheung, Y. F.; Praestegaard, M.; Baillie, G. S.; Huston, E.; Gall, I.;
Adams, D. R.; Houslay, M. D. Cell. Signal. 2003, 15, 955; (b) Christian, F.;
Anthony, D. F.; Vadrevu, S.; Riddell, T.; Day, J. P.; McLeod, R.; Adams, D. R.;
Baillie, G. S.; Houslay, M. D. Cell. Signal. 2010, 22, 1576; (c) Day, J. P.; Lindsay, B.;
Riddell, T.; Jiang, Z.; Allcock, R. W.; Abraham, A.; Sookup, S.; Christian, F.;
Bogum, J.; Martin, E. K.; Rae, R. L.; Anthony, D.; Rosair, G. M.; Houslay, D. M.;
Huston, E.; Baillie, G. S.; Klussmann, E.; Houslay, M. D.; Adams, D. R. J. Med.
29. (a) Houslay, M. D.; Adams, D. R. Nat. Biotechnol. 2010, 28, 38; (b) Alvarez, R.;
Sette, C.; Yang, D.; Eglen, R. M.; Wilhelm, R.; Shelton, E. R.; Conti, M. Mol.
Pharmacol. 1995, 48, 616; (c) McPhee, I.; Yarwood, S. J.; Scotland, G.; Huston, E.;
Beard, M. B.; Ross, A. H.; Houslay, E. S.; Houslay, M. D. J. Biol. Chem. 1999, 274,
11796; (d) Saldou, N.; Obernolte, R.; Huber, A.; Baecker, P. A.; Wilhelm, R.;
Alvarez, R.; Li, B.; Xia, L.; Callan, O.; Su, C.; Jarnagin, K.; Shelton, E. R. Cell. Signal.
1998, 10, 427.
9. Torphy, T. J.; Undem, B. J.; Cieslinski, L. B.; Luttmann, M. A.; Reeves, M. L.; Hay,
D. W. J. Pharmacol. Exp. Ther. 1993, 265, 1213.
10. (a) Van der Mey, M.; Bommele, K. M.; Boss, H.; Hatzelmann, A.; Van
Slingerland, M.; Sterk, G. J.; Timmerman, H. J. Med. Chem. 2003, 46, 2008; (b)
Giembycz, M. A. Proc. Am. Thorac. Soc. 2005, 2, 326; (c) Boswell-Smith, V.;
Spina, D.; Oxford, A. W.; Comer, M. B.; Seeds, E. A.; Page, C. P. J. Pharmacol. Exp.
Ther. 2006, 318, 840; (d) Banner, K. H.; Press, N. J. Br. J. Pharmacol. 2009, 157,
892; (e) Yamazaki, T.; Anraku, T.; Matsuzawa, S. Eur. J. Pharmacol. 2011, 650,
605.
11. (a) Kishi, Y.; Ohta, S.; Kasuya, N.; Sakita, S.; Ashikaga, T.; Isobe, M. Cardiovasc.
Drug Rev. 2001, 19, 215; (b) Gibson, L. C. D.; Hastings, S. F.; McPhee, I.; Clayton,
R. A.; Darroch, C. E.; Mackenzie, A.; MacKenzie, F. L.; Nagasawa, M.; Stevens, P.
A.; MacKenzie, S. J. Eur. J. Pharmacol. 2006, 538, 39; (c) Huang, Z.; Liu, S.; Zhang,
L.; Salem, M.; Greig, G. M.; Chan, C. C.; Natsumeda, Y.; Noguchi, K. Life Sci. 2006,
78, 2663.
12. (a) Kohno, Y.; Ogata, T.; Awano, K.; Matsuzawa, K.; Tooru, T. PCT Int. Appl.
Patent WO9814448, 1998.; (b) Yoshida, N.; Aono, M.; Tsubuki, T.; Awano, K.;
Kobayashi, T. Tetrahedron: Asymmetry 2003, 14, 529; (c) Yoshida, N.; Awano, K.;
Kobayashi, T.; Fujimori, K. Synthesis 2004, 1554.
13. Sircar, I.; Duell, B. L.; Bobowski, G.; Bristol, J. A.; Evans, D. B. J. Med. Chem. 1985,
28, 1405.
14. Bristol, J. A.; Sircar, I.; Moos, W. H.; Evans, D. B.; Weishaar, R. E. J. Med. Chem.
1984, 27, 1099.
15. Schudt, C.; Winder, S.; Muller, B.; Ukena, D. Biochem. Pharmacol. 1991, 42, 153.
16. Johnston, K. A.; Allcock, R. W.; Jiang, Z.; Collier, I. D.; Blakli, H.; Rosair, G. M.;
Bailey, P. D.; Morgan, K. M.; Kohno, Y.; Adams, D. R. Org. Biomol. Chem. 2008, 6,
175.
17. Tamura, Y.; Tsujimoto, N.; Sumida, Y.; Ikeda, M. Tetrahedron 1972, 28, 21.
18. This route to the tricyclic ketone was more versatile as it could be successfully
applied with other N-aminopyridinium salts such as the 2-methoxy
substituted salt (not shown).
19. (a) Gmeiner, P.; Sommer, J. Arch. Pharm. (Weinheim, Ger.) 1994, 327, 435; (b)
Gmeiner, P.; Sommer, J.; Mierau, J.; Höfner, G. Bioorg. Med. Chem. Lett. 1993, 3,
1477.
20. Scapin, G.; Patel, S. B.; Chung, C.; Varnerin, J. P.; Edmondson, S. D.; Mastracchio,
A.; Parmee, E. R.; Singh, S. B.; Becker, J. W.; Van der Ploeg, L. H.; Tota, M. R.
Biochemistry 2004, 43, 6091.
21. Card, G. L.; England, B. P.; Suzuki, Y.; Fong, D.; Powell, B.; Lee, B.; Luu, C.;
Tabrizizad, M.; Gillette, S.; Ibrahim, P. N.; Artis, D. R.; Bollag, G.; Milburn, M. V.;
Kim, S. H.; Schlessinger, J.; Zhang, K. Y. J. Structure 2004, 12, 2233.
22. (a) Houslay, M. D.; Adams, D. R. Biochem. J. 2003, 370, 1; (b) Zhang, K. Y. J.; Card,
G. L.; Suzuki, Y.; Artis, D. R.; Fong, D.; Gillette, S.; Hsieh, D.; Neiman, J.; West, B.
L.; Zhang, C.; Milburn, M. V.; Kim, S. H.; Schlessinger, J.; Bollag, G. Mol. Cell
2004, 15, 279; (c) Ke, H.; Wang, H. Curr. Top. Med. Chem. 2007, 7, 391; (d) Wang,
H.; Robinson, H.; Ke, H. J. Mol. Biol. 2007, 371, 302.
30. The X-ray CIF files for 43 and 45 have been deposited at the Cambridge
Crystallographic Data Center with the deposition numbers CCDC 811960 and
CCDC 811961. Copies of the data can be obtained, free of charge, from CCDC, 12
Union Road, Cambridge, CB2 1EZ UK (e-mail: deposit@ccdc.cam.ac.uk;