158
R. Kannappan et al. / Inorganica Chimica Acta 373 (2011) 150–158
(d) L. Fabbrizzi, M. Lichelli, P. Pallavicini, D. Sacchi, Supramol. Chem. 13 (2001)
659.
[2] L. Lattuada, A. Barge, G. Cravotto, G.B. Giovenzana, L. Tei, Chem. Soc. Rev. 40
(2011) 3019.
[3] (a) E. Brücher, A.D. Sherry, in: A.E. Merbach, E. Toth (Eds.), The Chemistry of
Contrast Agents in Medical Magnetic Resonance Imagings, Wiley, New York,
2001 (Chapter 6);
hypothesized octahedral environment is certainly due to axial
coordination of a solvent molecule (EtOH) at the opposite side of
oxygen atom from the amide group. Finally, CuL2Cl complex shows
a slightly more distorted environment around Cu(II), as reflected
by the Az and gz/Az values.
For pentacoordinated complexes, efforts have been made to ob-
tain quantitative measurements of distortions, the simplest angu-
lar parameter commonly used for these complexes is that
(b) P. Caravan, J.J. Ellison, T.J. McMurry, R.B. Lauffer, Chem. Rev. 99 (1999)
2293;
(c) R. Delgado, V. Felix, L.M.P. Lima, D.W. Price, Dalton Trans. 26 (2007) 2734;
(d) J.D.G. Correia, A. Paulo, P.D. Raposinho, I. Santos, Dalton Trans. (2011).
[4] (a) E. Kimura, T. Koike, Y. Inouye, in: R.W. Hay, J.R. Dilworth, K.B. Nolan (Eds.),
Perspective on Bioinorganic Chemistry, vol. 14, JAI Press. Inc., Stamford, CT,
1999, p. 145;
proposed by Addison [25]. A
Eq. (1), where and b describe the two largest L–M–L bond angles,
so that complexes with an ideal trigonal bipyramidal structure
have = 1, and those with ideal square pyramidal geometry have
= 0, and distorted complexes give values between 0 and 1:
s value is calculated according to
a
(b) X. Liang, J.A. Parkinson, M. Weishaüpl, R.O. Gould, S.L. Paisey, H.S. Park, T.M.
Hunter, C.A. Blindauer, S.A. Parson, P.J. Sadler, J. Am. Chem. Soc. 124 (2002)
9105;
(c) G.J. Bridger, R.T. Skerlj, Advances in Antiviral Drug Design, vol. 3, JAI Press
Inc., London, UK, 1999. p. 161.
s
s
s
s
¼ ð ꢁ bÞ=60
a
ð1Þ
[5] D.K. Cabbiness, D.W. Margerum, J. Am. Chem. Soc. 91 (1969) 6540.
[6] E.K. Barefield, Coord. Chem. Rev. 254 (2010) 1607.
[7] L. Fabbrizzi, M. Licchelli, A. Poggi, D. Sacchi, C. Zampa, Polyhedron 23 (2004)
373.
[8] S. Aime, M. Botta, G. Cravotto, L. Frullano, G. Giovenzana, S. Geninatti Crich, G.
Palmisano, M. Sisti, Helv. Chim. Acta 88 (2005) 588.
[9] Z. Otwinowski, W. Minor, Methods Enzymol. 276 (1997) 307.
[10] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 26
(1993) 343.
[11] SHELXL97, Program for the Refinement of Crystal Structures, 1997.
[12] F. Denat, S. Brandes, R. Guilard, Synlett 5 (2000) 561.
[13] (a) V. Amendola, M. Boiocchi, L. Fabrizzi, A. Palchetti, Chem. Eur. J. 11 (2005)
120;
A value of 0.15 calculated for CuL3Cl thanks to its crystallo-
graphic data indicates an almost ideal square pyramidal geometry
with a copper ion lying in the mean plane of the four nitrogen
atoms, thus leading to a strong overlap of the metal dx2
orbital
ꢁy2
and the nitrogen atom orbitals. The weak distortion of the coordi-
nation polyhedron is mainly due to the trans III configuration
adopted by the macrocycle (Fig. 5).
4. Conclusion
(b) B. Masereel, J. Wouters, L. Pochet, D. Lambert, J. Med. Chem. 41 (1998)
3239.
[14] L. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[15] (a) M. Levitt, M.F. Perutz, J. Mol. Biol. 210 (1988) 751;
(b) C.S. Page, H.S. Rzepa, Electronic Conference on Trends in Organic
Chemistry, 1995.
[16] B. Bosnich, C.K. Poon, M.L. Tobe, Inorg. Chem. 4 (1965) 1102.
[17] (a) Y. Dong, S. Farquhar, K. Gloe, L.F. Lindoy, B.R. Rumbel, P. Turner, K.
Wichmann, Dalton Trans. (2003) 1558;
(b) H. Ito, T. Ito, Acta Crystallogr., Sect. C 41 (1985) 1598.
[18] (a) A. Riesen, M. Zehnder, T.A. Kaden, Acta. Crystallogr., Sect. C 47 (1991) 531;
Three new cyclam based ligands bearing one N-sulfonylaceta-
mide group have been obtained, and their coordination to four dif-
ferent metals was studied. The replacement of the usual acetate
group by an N-sulfonylacetamide group results in a zwitterionic
form of the three corresponding ligands. It has been shown that
the amidate form of the pendant arm is maintained in the different
complexes. In order to study competition between carboxylic and
N-sulfonylacetamide groups, novel cyclams bearing the two kinds
of coordinating arms are currently synthesized in our laboratory.
ˇ
(b) I. Svobodová, P. Lubal, J. Plutnar, J. Havlícková, J. Kotek, P. Hermann, I.
Lukes, Dalton Trans. (2006) 5184.
ˇ
[19] (a) S. Füzerová, J. Kotek, I. Císarová, P. Hermann, K. Binnemans, I. Lukeš, Dalton
Trans. (2005) 2908;
(b) J. Kotek, P. Lubal, P. Hermann, I. Císarová, I. Lukeš, T. Godula, I. Svobodová,
Acknowledgments
ˇ
P. Táborsky´, J. Havel, Chem. Eur. J. 9 (2003) 233;
This work was supported by the CNRS, the French Minister for
Research, and the Regional Council of Burgundy.
(c) M. Studer, A. Riesen, T.A. Kaden, Acta Crystallogr., Sect. C 46 (1990) 741.
[20] (a) Y. Dong, G.A. Lawrance, L.F. Lindoy, P. Turner, Dalton Trans. (2003) 1567;
(b) P. Comba, P. Jurisic, Y.D. Lampeka, A. Peters, A.I. Prikhod’ko, H. Pritskow,
Inorg. Chim. Acta 99 (2001) 324.
Appendix A. Supplementary material
[21] (a) U. Sakaguchi, A.W. Addison, J. Chem. Soc., Dalton (1979) 600;
(b) T. Murakami, T. Takei, Y. Ishikawa, Polyhedron 16 (1997) 89;
(c) A.E. Goeta, J.A.K. Howard, D. Maffeo, H. Puschmann, J.A.G. Williams, D.S.
Yufit, J. Chem. Soc., Dalton Trans. (2000) 1873.
[22] (a) B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5 (1970) 143;
(b) J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance, first ed.,
Clarendon Press, Oxford, 1990.
[23] C. Bucher, E. Duval, J.M. Barbe, J.-N. Verpeaux, C. Amatore, R. Guilard, C. R.
Acad. Sci. Paris Sér. II c 3 (2000) 211.
[24] (a) K. Miyoshi, H. Tanaka, E. Kimura, S. Tsuboyama, Inorg. Chim. Acta 78 (1983)
23;
CCDC 763222, 763223, 763224, 763225 and 763226 contain the
supplementary crystallographic data for L3, CuL3Cl, ZnL2NO3,
CdL3NO3 and L1. These data can be obtained free of charge from
article can be found, in the online version, at doi:10.1016/
(b) E.V. Rybak-Akimova, A.Y. Nazarenko, L. Chen, P.W. Krieger, A.M. Herrera, V.
Tarasov, P.D. Robinson, Inorg. Chim. Acta 324 (2001) 1.
[25] (a) A.W. Addison, T.N. Rao, J. Reedijk, J. Van Rijn, G.C. Verschoor, J. Chem. Soc.,
Dalton Trans. (1984) 1349;
References
(b) S. Alvarez, M. Llunell, J. Chem. Soc., Dalton Trans. 23 (2000) 3288.
[26] L.E. Cheruzel, M.R. Cecil, S.E. Edison, M.S. Mashuta, M.J. Baldwin, R.M.
Buchanan, Inorg. Chem. 45 (2006) 3191.
[1] (a) R.D. Hancock, R.J. Motekaitis, J. Matshishi, I. Cukrowski, J.H. Reibenspies,
A.E. Martell, J. Chem. Soc., Perkin Trans. 2 (1996) 1925;
(b) A. Bianchi, M. Micheloni, P. Paoletti, Coord. Chem. Rev. 110 (1991) 17;
(c) E. Kimura, Prog. Inorg. Chem. 41 (1994) 443;