ARTICLE
3 (a) Aguiar, M.; Karasz, F. E.; Akcelrud, L. Macromolecules
1995, 28, 4598–4602; (b) Kolb, E. S.; Gaudiana, R. A.; Mehta,
P. G. Macromolecules 1996, 29, 2359–2364; (c) Kraft, A.; Grims-
dale, A. C.; Holmes, A. B. Angew Chem Int Ed Engl 1998, 37,
402–428.
cd/A. However, bipolar copoly(aryl ether) P1 is used as an
emitting dopant to enhance device performance by improv-
ing balance in charges injection and transport. Moreover, the
emitting chromophore in P1 is mainly distyrylbenzene resi-
dues (M2 residues). As shown in Figure 7, the emission
spectra of blend devices are almost identical with that of P1-
based device at high P1 content (PF/P1 ¼ 20/0.8 or 20/
1.6). Similarly, the 1931 Commission Internationale de
l’Eclairage (CIE) coordinates (x, y) of the EL emission shift
from (0.20, 0.22) of blend device (PF/P1 ¼ 20/0.2) to (0.21,
0.50) of blend device (PF/P1 ¼ 20/1.6) (Fig. 8, Table 4).
Therefore, the device performance of bipolar copoly(aryl
ether) P1 can be further enhanced by suitably blending with
PF to balance charge injection and transport. The results
demonstrate that polymers containing bipolar moieties are
effective in manipulating the performance of optoelectronic
devices.
4 (a) Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J.
H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos,
D. A.; Bre´das, J. L.; Logdlund, M. Nature 1999, 397, 121–128;
¨
(b) Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W. Adv
Mater 2000, 12, 1737–1750; (c) Akcelrud, L. Prog Polym Sci
2003, 28, 875–962.
5 (a) Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend,
R. H.; Holmes, A. B. Nature 1993, 365, 628–630; (b) Garten, F.;
Hilberer, A.; Cacialli, F.; Esselink, E.; van Dam, Y.; Schlatmann,
B.; Friend, R. H.; Klapwijk, T. M.; Hadziioannou, G. Adv Mater
1997, 9, 127–131.
6 (a) Takiguchi, T.; Park, D. H.; Ueno, H.; Yoshino, K.; Sugi-
moto, R. Synth Met 1987, 17, 657–662; (b) Braun, D.; Heeger,
A. J. Appl Phys Lett 1991, 58, 1982–1984.
CONCLUSIONS
7 (a) Kraft, A.; Burn, P. L.; Holmes, A. B.; Bradley, D. D. C.;
Friend, R. H.; Martens, J. H. F. Synth Met 1993, 57, 4163–4167;
(b) Antoniadis, H.; Abkowitz, M. A.; Hsieh, B. R. Appl Phys Lett
1994, 65, 2030–2032.
We have successfully synthesized a novel copoly(aryl ether)
(P1) consisting of alternate emitting segment (distyrylben-
zene derivatives) and bipolar moiety (linked TPA and aro-
matic 1,2,4-triazole). The copoly(aryl ether) was soluble in
common organic solvents and thermally stable (Td at 5 wt %
loss: 450 ꢀC). The PL spectra of P1 were almost identical
whether they were excited with 308 nm or 402 nm, because
of efficient Fo¨rster energy transfer. Estimated HOMO and
LUMO levels of bipolar model M1 were ꢁ5.35 and ꢁ2.74 eV,
respectively. The HOMO levels of P0 and P1 were ꢁ5.30 and
ꢁ5.32 eV, respectively, while their LUMO levels were ꢁ2.34
and ꢁ2.77 eV. Maximum luminance and maximum luminance
efficiency of P1-based device (380 cd/m2, 0.009 cd/A) were
superior to those of P0-based device (30 cd/m2, 0.001 cd/
A). Furthermore, blending the bipolar copoly(aryl ether)
(P1) with PF resulted in significant performance enhance-
ment. The performance enhancements had been attributed
to improved carriers injection and transport. Blend device
(PF/P1 ¼ 20/0.8) showed the best performance (maximum
luminescence efficiency: 1.08 cd/A; maximum luminescence:
3260 cd/m2). Current results indicate that the bipolar copo-
ly(aryl ether) (P1) is potentially applicable not only as
charges injection/transport promoter but also as emitting
dopant.
8 (a) Meyer, H.; Haarer, D.; Naarmann, H.; Horhold, H. H. Phys
¨
Rev B 1995, 52, 2587–5298; (b) Blom, P. W. M.; de John, M.
J. M.; Vleggaar, J. J. M. Appl Phys Lett 1996, 68, 3308–3310.
9 (a) Yang, Y.; Pei, Q.; Heeger, A. J. J Appl Phys 1996, 79,
934–939; (b) Wang, Y. Z.; Gebler, D. D.; Spry, D. J.; Fu, D. K.;
Swager, T. M.; MacDiarmid, A. G.; Epstein, A. J. IEEE Trans
Electron Devices 1997, 44, 1263–1268.
10 (a) Li, X.-C.; Grimsdale, A. C.; Cervini, R.; Holmes, A. B.;
Moratti, S. C.; Yong, T. M.; Gruner, J.; Friend, R. H. ACS Symp
¨
Ser 1997, 672, 322–344; (b) Meng, H.; Yu, W. L.; Huang, W.
Macromolecules 1999, 32, 8841–8847; (c) Martens, H. C. F.; Hui-
berts, J. N.; Blom, P. W. M. Appl Phys Lett 2000, 77, 1852–1854.
11 Adachi, C.; Tsutsui, T.; Saito, S. Appl Phys Lett 1989, 55,
1489–1491.
12 Brown, A. R.; Bradley, D. D. C.; Burroughes, J. H.; Friend,
R. H.; Greenham, N. C.; Burn, P. L.; Holmes, A. B.; Kraft, A.
Appl Phys Lett 1992, 61, 2793–2795.
13 (a) Parker, I. D.; Pei, Q.; Marrocco, M. Appl Phys Lett 1994,
65, 1272–1274; (b) Son, S.; Dodabalapur, A.; Lovinger, A. J.;
Galvin, M. E. Science 1995, 269, 376–378.
The authors thank the National Science Council of Taiwan for
financial aid through project NSC 98-2221-E-006-002-MY3.
14 Strukelj, M.; Papadimitrakopoulos, F.; Miller, T. M.; Roth-
berg, L. J. Science 1995, 267, 1969–1972.
15 Peng, Z.; Bao, Z.; Galvin, M. E. Chem Mater 1998, 10,
2086–2090.
REFERENCES AND NOTES
16 Zhou, X.; He, J.; Liao, L. S.; Lu, M.; Ding, X. M.; Hou, X. Y.;
Zhang, X. M.; He, X. Q.; Lee, S. T. Adv Mater 2000, 12,
265–269.
1 Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks,
R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Na-
ture 1990, 347, 539–541.
17 (a) Kido, J.; Harada, G.; Nagai, K. Chem Lett 1996, 25,
161–162; (b) Boyd, T. J.; Geerts, Y.; Lee, J.- K.; Fogg, D. E.; Lav-
oie, G. G.; Schrock, R. R.; Rubner, M. F. Macromolecules 1997,
30, 3553–3559; (c) Peng, Z.; Bao, Z.; Galvin, M. E. Chem Mater
1998, 10, 2086–2090; (d) Lu, J.; Hlil, A. R.; Sun, Y. Hay, A. S.;
Maindron, T.; Dodelet, J.-P.; D’Iorio, M. Chem Mater 1999, 11,
2 (a) Grem, G.; Leditzky, G.; Ullrich, B.; Leising, G. Adv Mater
1992, 4, 36–37; (b) Pei, Q.; Yang, Y. J Am Chem Soc 1996, 118,
7416–7417; (c) Andersson, M. R.; Thomas, O.; Mammo, W.;
Svensson, M.; Theander, M.; Inganas, O. J Mater Chem 1999,
¨
9, 1933–1940.
SYNTHESIS OF BIPOLAR COPOLY(ARYL ETHER), WU, LEE, AND CHEN
3107