The Journal of Physical Chemistry A
ARTICLE
However, the origin of the 2-order-of-magnitude difference in
the kET values of 1PUA and 2PUA is still unknown.
In contrast, since kD and kD are independent of the sub-
stituted position of the anthracene moiety, it was concluded that
the relaxation kinetics (except for electron transfer) are deter-
mined predominantly by the electronic properties inherent in
anthracene in the excited singlet state.
(13) Ohshiro, I.; Ikegami, M.; Shinohara, Y.; Nishimura, Y.; Arai, T.
Bull. Chem. Soc. Jpn. 2007, 80, 747–751.
(14) Berlman, I. B. Handbook of Fluorescence Spectra of Aromatic
Molecules; Academic Press: New York, 1971.
(15) Nishimura, Y.; Kamada, M.; Ikegami, M.; Nagahata, R.; Arai, T.
J. Photochem. Photobiol., A: Chem. 2006, 178, 150–155.
(16) Boens, N.; Tamai, N.; Yamazaki, I.; Yamazaki, T. Photochem.
Photobiol. 1990, 52, 911–917.
C
X
(17) David, G.; Wang, B.; Wasielewski, M. R. J. Photochem. Photo-
biol., A: Chem. 1996, 102, 71–80.
’ CONCLUSIONS
(18) Dahan, A.; Ashkenazi, T.; Kuznetsov, V.; Makievski, S.; Drug,
E.; Fadeev, L.; Bramson, M.; Schokoroy, S.; Rozenshine-Kemelmakher,
E.; Gozin, M. J. Org. Chem. 2007, 72, 2289–2296.
(19) Grabowski, Z. R.; Rotkiewicz, K. Chem. Rev. 2003,
103, 3899–4031.
The effect of substitution position on excited-state intermo-
lecular proton transfer in the excited singlet state was investi-
gated, and it was found that substitution position has a
considerable effect on the proton-transfer rate constant. It was
revealed that the charge density of the substituted position of the
anthracene moiety determines the rate constant of the formation
of new emissive species. However, the rate constant for the
generation of new emissive species was found to be 2 orders of
magnitude greater for 1PUA than for 2PUA, which was not
expected based on the difference in charge density at the
respective substituted positions.
(20) F.-Forgues, S.; Le Bris, M. T.; Guettꢀe, J. P.; Valeur, B. J. Phys.
Chem. 1988, 92, 6233–6237.
(21) Bowman-James, K. Acc. Chem. Res. 2005, 38, 671–678.
(22) Amendola, V.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M.
Acc. Chem. Res. 2006, 39, 343–353.
(23) Hay, B. P.; Firman, T. K.; Moyer, B. A. J. Am. Chem. Soc. 2005,
127, 1810–1919.
(24) Kasha, M.; Rawls, H. R. Photochem. Photobiol. 1968,
7, 561–569.
’ ASSOCIATED CONTENT
(25) Heldt, J.; Gormin, D.; Kasha, M. Chem. Phys. 1989,
136, 321–334.
(26) Nijegorodov, N.; Mabbs, R.; Winkoun, D. P. Spectrochim. Acta,
Part A 2003, 59, 595–606.
(27) McRae, E. G.; Goodman, L. J. Mol. Spectrosc.. 1958, 2, 464–493.
(28) Bryantsev, V. S.; Firman, T. K.; Hay, B. P. J. Phys. Chem. A 2005,
109, 832–842.
Supporting Information. 1H and 13C NMR spectra,
S
b
time-resolved spectra, DFT calculation results, and estimation
of new emissive spectra. This material is available free of charge
(29) Tominaga, K.; Walker, G. C.; Jarzeba, W.; Barbara, P. F. J. Phys.
Chem. 1991, 95, 10475–10485.
’ AUTHOR INFORMATION
(30) Birks, J. B. Photophysics of Aromatic Molecules; Wiley-Interscience:
London, 1970; p 301.
Corresponding Author
*Tel.: +81-29-853-4315. Fax: +81-29-853-6503. E-mail: arai@
chem.tsukuba.ac.jp.
(31) Mataga, N.; Ottolenghi, M. Molecular Association; Academic
Press: London, 1979; pp 1ꢀ78.
(32) Demas, J. N. Excited State Lifetime Measurements; Academic
Press: New York, 1983; p 59.
’ ACKNOWLEDGMENT
(33) Okada, T.; Saito, T.; Mataga, N.; Sakata, Y.; Misumi, S. Bull.
Chem. Soc. Jpn. 1977, 50, 331–336.
(34) Migita, M.; Okada, T.; Mataga, N.; Sakata, Y.; Misumi, S.;
Nakashima, N.; Yoshihara, K. Bull. Chem. Soc. Jpn. 1981, 54, 3304–3311.
(35) Okada, T.; Migita, M.; Mataga, N.; Sakata, Y.; Misumi, S. J. Am.
Chem. Soc. 1981, 103, 4715–4720.
This work was supported by a Grant-in-Aid for Scientific
Research in a Priority Area “New Frontiers in Photochromism”
(No. 471) from the Ministry of Education, Culture, Sports,
Science, and Technology (MEXT), Japan.
(36) Hirata, Y.; Kanda, Y.; Mataga, N. J. Phys. Chem. 1983,
87, 1659–1662.
’ REFERENCES
(37) Nishimura, Y.; Shimamura, K.; Ohmori, Y.; Shinohara, Y.; Arai,
T. J. Photochem. Photobiol. A: Chem. 2011, 218, 69–75.
(1) Mꢀa~nez, R. M.; Sancenꢀon, F. Chem. Rev. 2003, 103, 4419–4476.
(2) Smith, P. J.; Reddington, M. V.; Wilcox, C. S. Tetrahedron Lett.
1992, 33, 6085–6088.
(3) Fan, E.; van Arman, S. A.; Kincaid, S.; Hamilton, A. D. J. Am.
Chem. Soc. 1993, 115, 369–370.
(4) Nishizawa, S.; B€ulmann, P.; Iwao, M.; Umezawa, Y. Tetrahedron
Lett. 1995, 36, 6483–6486.
(5) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2001,
123, 11372–11375.
(6) Gunnlaugsson, T.; Davis, A. P.; O’Brien, J. E.; Glynn, M. Org.
Lett. 2002, 4, 2449–2452.
(7) Ghosh, K.; Adhikari, S. Tetrahedron Lett. 2006, 47, 8165–8169.
(8) Boiocchi, M.; Boca, L. D.; Gꢀomez, D. E.; Fabbrizzi, L.; Licchelli,
M.; Monzani, E. J. Am. Chem. Soc. 2004, 126, 16507–16514.
(9) Kwon, J. Y.; Jang, Y. J.; Kim, S. K.; Lee, K. H.; Kim, J. S.; Yoon, J.
J. Org. Chem. 2004, 69, 5155–5157.
(10) Jose, D. A.; Kumar, D. K.; Kar, P.; Verma, S.; Ghosh, A.;
Ganguly, B.; Ghosh, H. N.; Das, A. Tetrahedron 2007, 63, 12007–12014.
(11) Jose, D. A.; Singh, A.; Das, A.; Ganguly, B. Tetrahedron Lett.
2007, 48, 3695–3698.
(12) Ghosh, K.; Sen, T. Tetrahedron Lett. 2008, 49, 7204–7208.
8233
dx.doi.org/10.1021/jp2022693 |J. Phys. Chem. A 2011, 115, 8227–8233