ORGANIC
LETTERS
2011
Vol. 13, No. 15
3794–3797
Silylation-Based Kinetic Resolution of
Monofunctional Secondary Alcohols
Cody I. Sheppard, Jessica L. Taylor, and Sheryl L. Wiskur*
Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter
Street, GSRC 109, Columbia, South Carolina 29208, United States
Received May 11, 2011
ABSTRACT
The nucleophilic small molecule catalyst (À)-tetramisole was found to catalyze the kinetic resolution of monofunctional secondary alcohols via
enantioselective silylation. Optimization of this new methodology allows for selectivity factors up to 25 utilizing commercially available reagents
and mild reaction conditions.
Nonenzymatic kinetic resolutions are a powerful technique1
for generating highly enantiomerically enriched chiral com-
pounds. The most common method for the kinetic resolution
of secondary alcohols is by acylation,2 but recently, silylation
based kinetic resolutions have become a new and active area of
research.3 Considerable attention has been given to this
methodology since silyl groups have a broad tolerance for
other functional groups and have many advantages over other
protecting groups (orthogonal deprotection to other protect-
ing groups, ease and high yields of protection and deprotec-
tion, and easily tunable reactivity).4 Of the substrates targeted
for silylation-based kinetic resolutions, a practical level of
selectivity for monofunctional, bicyclic secondary alcohols,
such as 1, has remained elusive and suprisingly difficult until
now. This alcohol class contains useful chiral building blocks
and important core structures in biologically active
compounds5 such as dopamine agonists, selective norepi-
nephrine reuptake inhibitors, and anti-HIV agents. Although
these compounds are most commonly synthesized by the
asymmetric reduction of prochiral carbonyl compounds,6
the work described herein is the first kinetic resolution of
monofunctional secondary alcohols via silylation achieving
useful levels of enantioselectivity. Our method employs mild
conditions and utilizes commercially available reagents, there-
by circumventing the need to synthesize catalysts or novel
chiral silylating agents.
Great progress hasbeen made inexistingsilylationbased
kinetic resolutions, but the substrates have been mostly
(1) For reviews on kinetic resolutions see: (a) Kagan, H. B.; Fiaud,
J. C. In Topics in Stereochemistry, Vol. 18; Eliel, E. L, Wilen, S. H, Eds.;
John Wiley & Sons, Inc.: New York, 1988; pp 249. (b) Keith, J. M.;
Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5.
(c) Robinson, D. E. J. E.; Bull, S. D. Tetrahedron: Asymm. 2003, 14,
1407. (d) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974.
(2) For representative examples see: (a) Oriyama, T.; Hori, Y.; Imai,
K.; Sasaki, R. Tetrahedron Lett. 1996, 37, 8543. (b) Ruble, J. C.;
Tweddell, J.; Fu, G. C. J. Org. Chem. 1998, 63, 2794. (c) Copeland,
G. T.; Miller, S. J. J. Am. Chem. Soc. 2001, 123, 6496. (d) Vedejs, E.;
Daugulis, O. J. Am. Chem. Soc. 2003, 125, 4166. (e) MacKay, J. A.;
Vedejs, E. J. Org. Chem. 2004, 69, 6934. (f) Birman, V. B.; Li, X. Org.
Lett. 2006, 8, 1351. (g) Birman, V. B.; Li, X. Org. Lett. 2008, 10, 1115.
(h) Hu, B.; Meng, M.; Wang, Z.; Du, W.; Fossey, J. S.; Hu, X.; Deng,
W.-P. J. Am. Chem. Soc. 2010, 132, 17041.
(5) (a) Wu, K.; Pontillo, J.; Ching, B.; Hudson, S.; Gao, Y.; Fleck,
B. A.; Gogas, K.; Wade, W. S. Bioorg. Med. Chem. Lett. 2008, 18, 4224.
(b) Hudson, S.; Kiankarimi, M.; Eccles, W.; Mostofi, Y. S.; Genicot,
M. J.; Dwight, W.; Fleck, B. A.; Gogas, K.; Wade, W. S. Bioorg. Med.
Chem. Lett. 2008, 18, 4495. (c) Huang, L.; Kashiwada, Y.; Cosentino,
L. M.; Fan, S.; Chen, C.-H.; McPhail, A. T.; Fujioka, T.; Mihashi, K.;
Lee, K.-H. J. Med. Chem. 1994, 37, 3947. (d) DeWald, H. A.; Heffner,
T. G.; Jaen, J. C.; Lustgarten, D. M.; McPhail, A. T.; Meltzer, L. T.;
Pugsley, T. A.; Wise, L. D. J. Med. Chem. 1990, 33, 445.
(6) For reviews on asymmetric reductions see: (a) Modern Reduction
Methods; Wiley-VCH: Weinheim, 2008. (b) Brown, H. C.; Ramachandran,
P. V. Acc. Chem. Res. 1992, 25, 16. (c) Noyori, R.; Hashiguchi, S. Acc.
Chem. Res. 1997, 30, 97. (d) Corey, E. J.; Helal, C. J. Angew. Chem., Int.
Ed. 1998, 37, 1986.
(3) (a) Rendler, S.; Oestreich, M. Angew. Chem., Int. Ed. 2008, 47,
248. (b) Weickgenannt, A.; Mewald, M.; Oestreich, M. Org. Biomol.
Chem. 2010, 8, 1497.
(4) Wuts, P. G. M.; Greene, T. W. Protective Groups in Organic
Synthesis, 3rd ed.; Wiley-Interscience: New York, 1999.
(7) (a) Zhao, Y.; Rodrigo, J.; Hoveyda, A. H.; Snapper, M. L. Nature
2006, 443, 67. (b) Zhao, Y.; Mitra, A. W.; Hoveyda, A. H.; Snapper,
M. L. Angew. Chem., Int. Ed. 2007, 46, 8471.
r
10.1021/ol2012617
Published on Web 06/29/2011
2011 American Chemical Society