ACS Medicinal Chemistry Letters
LETTER
Dr. Mingxuan Zhang and Dr. Michael Ziebell for HRMS analysis; and
Michael Starks, Jason Hill, and Mark Pietrafitta for analytical support.
T. R.; Talanian, R. V. 2,4-Diaminopyrimidine MK2 inhibitors. Part II:
Structure-based inhibitor optimization. Bioorg. Med. Chem. Lett. 2010,
20, 334.
(19) Xiong, Z.; Gao, D. A.; Cogan, D. A.; Goldberg, D. R.; Hao,
M.-H.; Moss, N.; Pack, E.; Pargellis, C.; Skow, D.; Trieselmann, T.;
Werneburg, B.; White, A. Synthesis and SAR studies of indole-based
MK2 inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 1994.
(20) Anderson, D. R.; Meyers, M. J.; Vernier, W. F.; Mahoney,
M. W.; Kurumbail, R. G.; Caspers, N.; Poda, G. I.; Schindler, J. F.; Reitz,
D. B.; Mourey, R. J. Pyrrolopyridine inhibitors of mitogen-activated
protein kinase-activated protein kinase 2 (MK-2). J. Med. Chem. 2007,
50, 2647.
(21) Lin, S.; Lombardo, M.; Malkani, S.; Hale, J. J.; Mills, S. G.;
Chapman, K.; Thompson, J. E.; Zhang, W. X.; Wang, R.; Cubbon,
R. M.; O'Neill, E. A.; Luell, S.; Carballo-Jane, E.; Yang, L. Novel 1-(2-
aminopyrazin-3-yl)methyl-2-thioureas as potent inhibitors of mitogen-
activated protein kinase-activated protein kinase 2 (MK-2). Bioorg. Med.
Chem. Lett. 2009, 19, 3238.
(22) Mourey, R. J.; Burnette, B. L.; Brustkern, S. J.; Daniels, J. S.;
Hirsch, J. L.; Hood, W. F.; Meyers, M. J.; Mnich, S. J.; Pierce, B. S.;
Saabye, M. J.; Schindler, J. F.; South, S. A.; Webb, E. G.; Zhang, J.;
Anderson., D. R. A benzothiophene inhibitor of mitogen-activated
protein kinase-activated protein kinase 2 inhibits tumor necrosis
factor R production and has oral anti-inflammatory efficacy in acute
and chronic models of inflammation. J. Pharmacol. Exp. Ther. 2010,
333, 797.
(23) Olsson, H.; Sj€o, P.; Ersoy, O.; Kristoffersson, A.; Larsson, J.;
Nordꢀen, B. 4-Anilino-6-phenyl-quinoline inhibitors of mitogen activated
protein kinase-activated protein kinase 2 (MK2). Bioorg. Med. Chem.
Lett. 2010, 20, 4738.
(24) Annis, A.; Chuang, C.-C.; Nazef, N. ALIS: An Affinity Selec-
tion-Mass Spectrometry System for the Discovery and Characterization
of Protein-Ligand Interactions. In Methods and Principles in Medicinal
Chemistry; Wanner, K., H€ofner, G., Eds.; Mass Spectrometry in Medicinal
Chemistry: Applications in Drug Discovery; Mannhold, R., Kubinyi, H.,
Folkers, G., Series Eds.; Wiley-VCH Verlag GmbH & Co. KGaA:
Weinheim, 2007; Vol. 36, Chapter 3.
(25) Zu, Y.-L.; Ai, Y.; Huang, C.-K. Characterization of an auto-
inhibitory domain in human mitogen-activated protein kinase-activated
protein kinase 2. J. Biol. Chem. 1995, 270, 202.
(26) Meng, W.; Swenson, L. L.; Fitzgibbon, M. J.; Hayakawa, K.;
Haar, E. t.; Behrens, A. E.; Fulghum, J. R.; Lippke, J. A. Structure of
mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2
suggests a bifunctional switch that couples kinase activation with nuclear
export. J. Biol. Chem. 2002, 277, 37401.
(27) Engel, K.; Kotlyarov, A.; Gaestel, M. Leptomycin B-sensitive
nuclear export of MAPKAP kinase 2 is regulated by phosphorylation.
EMBO J. 1998, 17, 3363.
(28) Kervinen, J.; Ma, H.; Bayoumy, S.; Schubert, C.; Milligan, C.;
Lewandowski, F.; Moriarty, K.; DesJarlais, R. L.; Ramachandren, K.;
Wang, H.; Harris, C. A.; Grasberger, B.; Todd, M.; Springer, B. A.;
Deckman, I. Effect of construct design on MAPKAP kinase-2 activity,
thermodynamic stability and ligand-binding affinity. Arch. Biochem.
Biophys. 2006, 449, 47.
(29) Malawski, G. A.; Hillig, R. C.; Monteclaro, F.; Eberspaecher, U.;
Schmitz, A. A. P.; Crusius, K.; Huber, M.; Egner, U.; Donner, P.; M€uller-
Tiemann, B. Identifying protein construct variants with increased
crystallization propensity—A case study. Protein Sci. 2006, 15, 2718.
(30) McCoy, M. A.; Senior, M. M.; Wyss, D. F. Screening of protein
kinases by ATP-STD NMR spectroscopy. J. Am. Chem. Soc. 2005,
127, 7978.
(31) Akaike, H. An information criterion (AIC). Math. Sci. 1976, 14, 5.
(32) Jones, S. W.; Brockbank, S. M. V.; Clements, K. M.; Le Good,
N.; Campbell, D.; Read, S. J.; Needham, M. R. C.; Newham, P. Mitogen-
activated protein kinase-activated protein kinase 2 (MK2) modulates
key biological pathways associated with OA disease pathology. Osteoar-
thritis Cartilage 2009, 17, 124.
’ REFERENCES
(1) Tobꢀon, G. J.; Youinou, P.; Saraux, A. The environment, geo-
epidemiology, and autoimmune disease: Rheumatoid arthritis. Autoim-
mun. Rev. 2010, 9, A288.
(2) Kumar, S.; Boehm, J.; Lee, J. C. p38 MAP Kinases: key signalling
molecules as therapeutic targets for inflammatory diseases. Nat. Rev.
Drug Discovery 2003, 2, 717.
(3) Schindler, J. F.; Monahan, J. B.; Smith, W. G. p38 Pathway
kinases as anti-inflammatory drug targets. J. Dent. Res. 2007, 86, 800.
(4) Schett, G.; Zwerina, J.; Firestein, G. The p38 mitogen-activated
protein kinase (MAPK) pathway in rheumatoid arthritis. Ann. Rheum.
Dis. 2008, 67, 909.
(5) Alten, R. E.; Zerbini, C.; Jeka, S.; Irazoque, F.; Khatib, F.; Emery,
P.; Bertasso, A.; Rabbia, M.; Caulfield, J. P. Efficacy and safety of
pamapimod in patients with active rheumatoid arthritis receiving stable
methotrexate therapy. Ann. Rheum. Dis. 2010, 69, 364.
(6) Dambach, D. M. Potential adverse effects associated with
inhibition of p38R/β MAP kinases. Curr. Top. Med. Chem. 2005, 5, 929.
(7) Gaestel, M; Mengel, A.; Bothe, U.; Asadullah, K. Protein kinases
as small molecule inhibitor targets in inflammation. Curr. Med. Chem.
2007, 14, 2214.
(8) Duraisamy, S.; Bajpai, M.; Bughani, U.; Dastidar, S. G.; Ray, A.;
Chopra, P. MK2: A novel molecular target for anti-inflammatory
therapy. Expert Opin. Ther. Targets 2008, 12, 921.
(9) White, A.; Pargellis, C. A.; Studts, J. M.; Werneburg, B. G.;
Farmer, B. T., II. Molecular basis of MAPK-activated protein kinase 2:
p38 assembly. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 6353.
(10) Haar, E. t.; Prabhakar, P.; Liu, X.; Lepre, C. Crystal structure of
the p38R-MAPKAP kinase 2 heterodimer. J. Biol. Chem. 2007, 282,
14684.
(11) Kotlyarov, A.; Neininger, A.; Schubert, C.; Eckert, R.; Birch-
meier, C.; Volk, H.-D.; Gaestel, M. MAPKAP kinase 2 is essential for
LPS-induced TNF-R biosynthesis. Nat. Cell Biol. 1999, 1, 94.
(12) Shi, Y.; Kotlyarov, A.; Laaβ, K.; Gruber, A. D.; Butt, E.; Marcus,
K.; Meyer, H. E.; Friedrich, A.; Volk, H.-D.; Gaestel, M. Elimination of
protein kinase MK5/PRAK activity by targeted homologous recombi-
nation. Mol. Cell. Biol. 2003, 23, 7732.
(13) Ronkina, N.; Kotlyarov, A.; Dittrich-Breiholz, O.; Kracht, M.;
Hitti, E.; Milarski, K.; Askew, R.; Marusic, S.; Lin, L.-L.; Gaestel, M.;
Telliez, J.-B. The mitogen-activated protein kinase (MAPK)-activated
protein kinases MK2 and MK3 cooperate in stimulation of tumor
necrosis factor biosynthesis and stabilization of p38 MAPK. Mol. Cell.
Biol. 2007, 27, 170.
(14) Hegen, M.; Gaestel, M.; Nickerson-Nutter, C. L.; Lin, L.-L.;
Telliez, J.-B. MAPKAP Kinase 2-deficient mice are resistant to collagen-
induced arthritis. J. Immunol. 2006, 177, 1913.
(15) Gorska, M. M.; Liang, Q.; Stafford, S. J.; Goplen, N.; Dharajiya,
N.; Guo, L.; Sur, S.; Gaestel, M.; Alam, R. MK2 controls the level of
negative feedback in the NF-kB pathway and is essential for vascular
permeability and airway inflammation. J. Exp. Med. 2007, 204, 1637.
(16) Basabe, P.; Martín, M.; Bodero, O.; Blanco, A.; Marcos, I. S.;
Díez, D.; Urones, J. G. Synthesis of (+)-makassaric acid, a protein kinase
MK2 inhibitor. Tetrahedron 2010, 66, 6008.
(17) Argiriadi, M. A.; Ericsson, A. M.; Harris, C. M.; Banach, D. L.;
Borhani, D. W.; Calderwood, D. J.; Demers, M. D.; DiMauro, J.; Dixon,
R. W.; Hardman, J.; Kwak, S.; Li, B.; Mankovich, J. A.; Marcotte, D.;
Mullen, K. D.; Ni, B.; Pietras, M.; Sadhukhan, R.; Sousa, S.; Tomlinson,
M. J.; Wang, L.; Xiang, T.; Talanian, R. V. 2,4-Diaminopyrimidine MK2
inhibitors. Part I: Observation of an unexpected inhibitor binding mode.
Bioorg. Med. Chem. Lett. 2010, 20, 330.
(18) Harris, C. M.; Ericsson, A. M.; Argiriadi, M. A.; Barberis, C.;
Borhani, D. W.; Burchat, A.; Calderwood, D. J.; Cunha, G. A.; Dixon,
R. W.; Frank, K. E.; Johnson, E. F.; Kamens, J.; Kwak, S.; Li, B.; Mullen,
K. D.; Perron, D. C.; Wang, L.; Wishart, N.; Wu, X.; Zhang, X.; Zmetra,
637
dx.doi.org/10.1021/ml200113y |ACS Med. Chem. Lett. 2011, 2, 632–637