T. Le et al. / Tetrahedron Letters 52 (2011) 3645–3647
3647
O
H
N
O
N
HN
R
O
O
R
NH
O
O
O
O
N
a
HN
b
O
NH2
NH2
NH2
+
O
N
N
H
NH
O
O
R
O
HN
1
6
7
R
O
8
Scheme 2. Reagents and conditions: (a) acid chloride, NaH, 1,4-dioxane, 0 °C to rt, 45 min; (b) DIPEA, CH2Cl2, 0 °C to rt, 24 h.
Table 3
trichloride and tris(2-aminoethyl)amine were investigated as the
central core unit and several examples of both types of dendrimers
were produced.
Tris(aminoethyl)amine gloxylamide peptidomimetics
Entry
R
Product
Yielda (%)
1
2
OCH3
CH2CH2COOCH3
8a
8b
30
28
Acknowledgments
a
Isolated yields.
We thank the University of New South Wales and the Australian
Research Council for their financial support.
References and notes
1. Cohen, S.; Chen, L.; Apte, R. N. React. Polym. 1995, 25, 177–187.
2. Kannan, R. M.; Kolhe, P.; Misra, E.; Kannan, S.; Lai, M. L. Int. J. Pharm. 2003, 259,
143–160.
3. Zimmerman, S. C.; Zeng, F. Chem. Rev. 1997, 97, 1681–1712.
4. Aulenta, F.; Hayes, W.; Rannard, S. Eur. Polym. J. 2003, 39, 1741–1771.
5. Kohle, P.; Misra, E.; Kannan, R. M.; Kannan, S.; Lieh-Lai, M. Int. J. Pharm. 2003,
259, 143–160.
6. Mulders, S. J. E.; Brouwer, A. J.; Liskamp, R. M. J. Tetrahedron Lett. 1997, 38,
3085–3088.
7. Mulders, S. J. E.; Brouwer, A. J.; Van Der Meer, P. G. J.; Liskamp, R. M. J.
Tetrahedron Lett. 1997, 38, 631.
8. Chow, H. F.; Mong, T. K. K.; Chan, Y. H.; Cheng, C. H. K. Tetrahedron 2003, 59,
3815–3820.
9. Chapman, T. M.; Hillyer, G. L.; Mahan, E. J.; Shaffer, K. A. J. Am. Chem. Soc. 1994,
116, 11195–11196.
10. Banerji, B.; Bhattacharya, M.; Madhu, R. B.; Das, S. K.; Iqbal, J. Tetrahedron Lett.
2002, 43, 6473–6477.
11. Gjermansen, M.; Ragas, P.; Sternberg, C.; Molin, S.; Tolker-Nielsen, T. Environ.
Microbiol. 2005, 7, 894.
12. Cheah, W. C.; Black, D. S.; Goh, W. K.; Kumar, N. Tetrahedron Lett. 2008, 49,
2965–2968.
13. Examples of dendrimer central cores: (a) James, T. D.; Shinmori, H.; Takeuchi,
M.; Shinkai, S. Chem. Commun. 1996, 705–706; (b) Newkome, G. R.; Yao, Z.-Q.;
Baker, G. R.; Gupta, V. K.; Russo, P. S.; Saunders, M. J. J. Am. Chem. Soc. 1986, 108,
849–850; (c) Gitsov, I.; Wooley, K. L.; Frechet, J. M. J. Angew. Chem. 1992, 104,
1282–1285; (d) Inoue, K. Prog. Polym. Sci. 2000, 25, 453–571; (e) Ashton, P. R.;
Anderson, D. W.; Brown, C. L.; Shipway, A. N.; Stoddart, J. F.; Tolley, M. S. Chem.
Eur. J. 1998, 4, 781–793; (f) Hajela, S. P.; Johnson, A. R.; Xu, J.; Sunderland, C. J.;
Cohen, S. M.; Caulder, D. L.; Raymond, K. N. Inorg. Chem. 2001, 40, 3208–3216;
(g) Ghosh, S.; Reches, M.; Gazit, E.; Verma, S. Angew. Chem., Int. Ed. 2007, 46,
2002–2004.
14. Representative procedure for 5a: Glycine methyl ester hydrochloride (6.0 mmol)
was added to a stirred solution of 1,3,5-triacylisatin 3 (1.0 mmol) in CH2Cl2
(60 ml) and saturated NaHCO3 in H2O (3 ml) at 5 °C. The reaction was warmed
to room temperature and stirred for 24 h. The organic layer was washed with
aqueous HCl (0.5 M, 25 ml) and H2O (20 ml) before being concentrated under
vacuum. Trituration with CH2Cl2 gave 5a as fine off-white flakes (20%). Mp
178–180 °C, 1H NMR (300 MHz, DMSO-d6): 11.6 (3H, br s, NHCO), 9.24 (3H, t, J
5.6 Hz, CONH), 8.75 (3H, s, H13, H15, H17), 8.16 (3H, dd, J 1.5, 7.9 Hz, H7, H70,
H700), 7.85 (3H, dd, J 1.5, 7.9 Hz, H4, H40, H400), 7.75 (3H, J 1.5, 7.5 Hz, H6, H60,
H600), 7.37 (3H, dt, J 1.5, 7.5 Hz, H5, H50, H500), 3.96 (6H, d, J 6.0 Hz, CH2), 3.62
(9H, s, COOCH3). 13C NMR (75 MHz, DMSO-d6): 191.9, 169.9, 164.5, 164.4,
138.9, 135.6, 135.1, 132.6, 130.0, 124.7, 124.3, 122.8, 52.3, 40.9. HRMS (ESI) m/z
calcd for C42H35N6O15 (MꢀH)+ 863.2166; found 863.2166. Anal. Calcd for
Figure 1. ORTEP diagram of 8a.16
Isatin (1) was then reacted with methyl 4-chloro-4-oxobutyrate
to give the longer chain N-oxobutanoate 6b in 60% yield. Reaction
of 6b with tris(2-aminoethyl)amine (7) produced peptidomimetic
8b in 28% yield. Saponification of the methyl ester groups was sub-
sequently investigated on the basis that the peptide chain could
then be extended through amide coupling with the free acids.
Saponification of 8b with aqueous potassium hydroxide in metha-
nol proved to be problematic, however, producing polymeric by-
products in preference to the desired tris-carboxylic acid. It was
postulated that polymerization was favoured due to the presence
of so many labile groups.
C42H36N6O15: C, 58.33; H, 4.20; N, 9.72. Found: C, 58.30; H, 4.44; N, 9.44.
15. Orvig, C.; Hoveyda, H. R.; Karunaratne, V.; Nichols, C. J.; Rettig, S. J.; Stephens, A.
K. W. Can. J. Chem. 1998, 76, 414–425.
16. Crystallographic data for the structure in this Letter have been deposited with
the Cambridge Crystallographic Data Centre as supplementary publication no.
CCDC 806995 (8a). X-ray crystal structures were obtained by Mohan
Bhadbhade, Crystallography Laboratory, UNSW Analytical Centre, Sydney,
Australia.
In summary, the facile ring-opening of N-acylisatins with alco-
hols, amines, and amino acids has been successfully applied to the
synthesis of peptidomimetic dendrimers. 1,3,5-Benzenetricarbonyl