Journal of the American Chemical Society
ARTICLE
’ CONCLUSIONS
(6) (a) Posselt, K. Arzneim. Forsch. 1978, 28, 1056–1065. (b) See also:
Alarcon, H. A. R.; Soldatenkov, A. T.; Soldatova, S. A.; Samalyoa, A. I.;
Obando, H. U.;Prostakov, N. S. Khim. Geterotsikl. Soedin. 1993, 1233–1238.
(7) Decomposition products are obtained.
(8) Sommer, J.; Bukala, J. Acc. Chem. Res. 1993, 26, 370–376.
(9) Zhao, Y.; Truhlar, D. Theor. Chem. Acc. 2008, 120, 215–241.
(10) Jaguar, version 7.7; Schrodinger, LLC: New York, 2010.
(11) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007–1023.
(12) Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1993, 98, 1358–1371.
(13) Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.;
Ringnalda, M. N.; Sitkoff, D.; Honig, B. J. Phys. Chem. 1996, 100,
11775–11788.
(14) Lira, A. L.; Zolotukhin, M.; Fomina, L.; Fomine, S. J. Phys.
Chem. A 2007, 111, 13606–13610.
(15) Frisch, M. J. T.; et al. Gaussian 03, revision D.02; Gaussian, Inc.:
Wallingford, CT, 2004.
(16) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J.
J. Phys. Chem. 1994, 98, 11623–11627.
We have studied the superacid-promoted reactions of a series
of triarylmethanols, which generate tricationic intermediates. As
compared to analogous mono- and dicationic species, the tri-
cationic intermediates exhibit new reactions resulting from the
effects of the closely oriented positive charges. These effects in-
clude the tendency for cationic charge to “migrate” across a phenyl
ring and the tendency for neighboring protons to exhibit very
high acidities. The migration of charge across organic structures
is important in material science applications and in the design of
organic-based electronics. Our results show that densely charged
structures may have high charge mobilities. As a consequence,
these tricationic superelectrophiles react with arene nucleophiles
at a remote site. Without a nucleophilic reactant, cyclizations oc-
cur to provide novel N-heterocyclic products. The functionalized
heterocycles are produced in good to excellent yields. Computa-
tional studies indicate that this chemistry arises from the deprotona-
tion of an unusually acidic pyridinium ring.
(17) Kutzelnigg, W.; Fleischer, U.; Schindler, M. In NMR, Basic
Principles and Progress; Diehl, P., Fluck, E., G€unther, H., Kosfield, R.,
Seelig, J., Eds.; Springer-Verlag: Berlin, 1990; Vol. 23, pp 165À262.
(18) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter,
J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO 5.0; Theoretical
Chemistry Institute, University of Wisconsin, Madison, WI, 2001;
’ ASSOCIATED CONTENT
S
Supporting Information. Detailed experimental proce-
b
dures, characterization data, H and 13C NMR spectra for new
1
(19) Mackie, I. D.; DiLabio, G. A. J. Phys. Chem. A 2008, 112,
10968–10976.
compounds, 13C NMR spectra for ions 26 and 27, computational
methods and results, and crystallographic data for compounds 11
and 18. This material is available free of charge via the Internet at
(20) Nilsson Lill, S. O. J. Mol. Graphics Modell. 2010, 29, 178–187.
(21) (a) Ohwada, T.; Okabe, K.; Ohta, T.; Shudo, K. Tetrahedron
1990, 46, 7539–7555. (b) Shudo, K.; Ohta, T.; Okamoto, T. J. Am.
Chem. Soc. 1981, 103, 645–653. (c) Nakamura, S.; Sugimoto, H.;
Ohwada, T. J. Am. Chem. Soc. 2007, 129, 1724–1732. (d) O’Connor,
M. J.; Boblak, K. N.; Topinka, M. J.; Kindelin, P. J.; Briski, J. M.; Zheng,
C.; Klumpp, D. A. J. Am. Chem. Soc. 2010, 132, 3266–3267.
(22) Nelson, K. L.; Brown, H. C. J. Am. Chem. Soc. 1951, 73,
5605–5607.
’ AUTHOR INFORMATION
Corresponding Author
(23) Olah, G. A. Acc. Chem. Res. 1971, 4, 240–248.
(24) Abarca, B.; Asensios, G.; Ballesteros, R.; Luna, C. Tetrahedron
Lett. 1986, 27, 5657–5660.
(25) (a) Forsyth, D. A.; Sandel, B. B. J. Org. Chem. 1980, 45,
2391–2394. (b) Forsyth, D. A.; Spear, R. J.; Olah, G. A. J. Am. Chem.
Soc. 1976, 98, 2512–2518.
(26) (a) Nenajdenko, V. G.; Shevchenko, N. E.; Balenkova, E. S.
Chem. Rev. 2003, 103, 229–282. (b) Olah, G. A.; Grant, J. L.; Spear, R. J.;
Bollinger, J. M.; Serianz, A.; Sipos, G. J. Am. Chem. Soc. 1976, 98, 2501.
(c) Larsen, J. W.; Bouis, P. A. J. Am. Chem. Soc. 1975, 97, 6094–6102.
(d) Olah, G. A.; Calin, M. J. Am. Chem. Soc. 1968, 90, 4672–4675.
(e) Olah, G. A.; Reddy, V. P.; Rasul, G.; Prakash, G. K. S. J. Am. Chem.
Soc. 1999, 121, 9994–9998.
(27) (a) Perrin, D. D. Dissociation Constants of Organic Bases in Aqueous
Solution; Butterworths: London; 1965. (b) Eicher, T.; Hauptmann, S. The
Chemistry of Heterocycles; Wiley-VHC: Weinheim, 2003.
’ ACKNOWLEDGMENT
We gratefully acknowledge the support of the National
Science Foundation (CHE-0749907 and CRIF MU-0840504)
and the NIH-National Institute of General Medical Sciences
(GM085736-01A1). S.O.N.L. gratefully acknowledges the finan-
cial support from the Åke Wiberg Foundation.
’ REFERENCES
(1) Olah, G. A.; Germain, A.; Lin, H. C.; Forsyth, D. J. Am. Chem. Soc.
1975, 97, 2928–2929.
(2) Olah, G. A.; Klumpp, D. A. Superelectrophiles and Their
Chemistry; Wiley: New York, 2008.
(3) (a) Prakash, G. K. S.; Rawdah, T. N.; Olah, G. A. Angew. Chem.,
Int. Ed. Engl. 1983, 22, 390–401. (b) Ito, S.; Morita, N.; Asao, T. Bull.
Chem. Soc. Jpn. 2000, 73, 1865–1874. (c) Head, N. J.; Prakash, G. K. S.;
Bashir-Hashemi, A.; Olah, G. A. J. Am. Chem. Soc. 1995, 117, 12005–12006.
(d) Rathore, R.; Burns, C. L.; Green, I. A. J. Org. Chem. 2004, 69,
1524–1530. (e) Reddy, V. P.; Rasul, G.; Prakash, G. K. S.; Olah, G. A.
J. Org. Chem. 2003, 68, 3507–3510. (f) See also: Pagni, R. M. Tetrahedron
1984, 49, 4161–4215.
(4) For recent examples of reactive tricationic species, see: (a)
Ohwada, T.; Yamagata, N.; Shudo, K. J. Am. Chem. Soc. 1991, 113,
1364–1373. (b) Kurouchi, H.; Sugimoto, H.; Otani, Y.; Ohwada, T.
J. Am. Chem. Soc. 2010, 132, 807–815. (c) Zhang, Y.; Sheets, M. R.;
Raja, E. K.; Boblak, K. J.; Klumpp, D. A. J. Am. Chem. Soc. 2011, 133,
8467–8469.
(5) Crystallographic data are found in the Supporting Information.
13175
dx.doi.org/10.1021/ja2046364 |J. Am. Chem. Soc. 2011, 133, 13169–13175