Notes and references
1 (a) H. G. Franck and J. W. Stadelhofer, Industrial Aromatic Chemistry,
Springer-Verlag, Berlin, 1988; (b) D. Astruc, Modern Arene Chemistry,
Wiley-VCH, Weinheim, Germany, 2002; (c) H. Surburg and J. Panten,
Common Fragrance and Flavor Materials, Wiley-VCH, Weinheim,
Germany, 5th edn, 2006.
2 (a) G. A. Olah, Friedel–Crafts Chemistry, Wiley, New York,
1973; (b) G. Sartori and R. Maggi, Advances in Friedel–Crafts
Acylation Reactions: Catalytic and Green Processes, CRC Press,
2009; (c) N. J. Lawrence, J. Chem. Soc., Perkin Trans. 1, 1998,
1739.
3 (a) H. M. Colquhoun, D. J. Thomson and M. V. Twigg,
Carbonylation: Direct Synthesis of Carbonyl Compounds, Plenum,
New York, 1991, p. 205; (b) Y. J. Park, J.-W. Park and C.-H. Jun,
Acc. Chem. Res., 2008, 41, 222; (c) M. C. Willis, Chem. Rev., 2010,
110, 725; (d) K. Hirano, A. T. Biju, I. Piel and F. Glorius, J. Am.
Chem. Soc., 2009, 131, 14190.
4 (a) Y.-C. Huang, K. K. Majumdar and C.-H. Cheng, J. Org.
Chem., 2002, 67, 1682; (b) T. Satoh, T. Itaya, M. Miura and
M. Nomura, Chem. Lett., 1996, 823; (c) S. Ko, B. Kang and
´
S. Chang, Angew. Chem., Int. Ed., 2005, 44, 455; (d) P. Alvarez-
Bercedo, A. Flores-Gaspar, A. Correa and R. Martin, J. Am.
Chem. Soc., 2010, 132, 466; (e) A. Zanardi, J. A. Mata and E. Peris,
Organometallics, 2009, 28, 1480; (f) M. Padmanaban, A. T. Biju
and F. Glorius, Org. Lett., 2011, 13, 98; (g) L. Adak, S. Bhadra and
B. C. Ranu, Tetrahedron Lett., 2010, 51, 3811.
Scheme 1 Plausible catalytic cycle.
5 (a) J. Ruan, O. Saidi, J. A. Iggo and J. Xiao, J. Am. Chem. Soc.,
2008, 130, 10510; (b) P. Colbon, J. Ruan, M. Purdie and J. Xiao,
Org. Lett., 2010, 12, 3670.
6 (a) T. Ishiyama and J. F. Hartwig, J. Am. Chem. Soc., 2000,
122, 12043; (b) A. Takemiya and J. F. Hartwig, J. Am. Chem. Soc.,
2006, 128, 14800.
7 (a) M. Pucheault, S. Darses and J.-P. Genet, J. Am. Chem. Soc.,
2004, 126, 15356; (b) G. Mora, S. Darses and J.-P. Genet, Adv.
Synth. Catal., 2007, 349, 1180.
8 (a) N. Imlinger, M. Mayr, D. Wang, K. Wurst and
M. R. Buchmeiser, Adv. Synth. Catal., 2004, 346, 1836;
(b) N. Imlinger, K. Wurst and M. R. Buchmeiser, J. Organomet.
Chem., 2005, 690, 4433; (c) Z. Wang, G. Zou and J. Tang, Chem.
Commun., 2004, 1192.
This mechanism includes (1) transmetalation of boronic acid
to [Ru(CO)3Cl2]2 to form an arylruthenium complex A,14 (2)
insertion of aldehyde into the ruthenium-carbon bond to give
an alkoxo-ruthenium intermediate B, (3) b-hydride elimination
from B, a rate-determining step, to release the diaryl ketone
and hydridoruthenium complex C, (4) insertion of pina-
colone into the ruthenium-hydrogen bond to give an alkoxo-
ruthenium intermediate D, (5) transmetalation of boronic acid
to intermediate D, allowing the regeneration of arylruthenium
complex A.
Further experiments were performed to verify the presumed
catalytic pathways. Recently, Darses and Genet reported
Rh-catalyzed cross-coupling of aldehydes with boron reagents
to access ketones. In the absence of base, secondary alcohol,
instead of ketone, was observed in the transformation.7b The role
of base was the regeneration of an alkoxo-rhodium intermediate.
In sharp contrast, both secondary alcohol and ketone were
achieved even in the absence of base in our transformation
(eqn (6), see supporting informationw). This suggests that base
is not essential for generation of arylruthenium intermediate A or
regeneration of alkoxo-ruthenium intermediate B.
9 Y. J. Park, E.-A. Jo and C.-H. Jun, Chem. Commun., 2005, 1185.
10 Y. Yamamoto, K. Kurihara and N. Miyaura, Angew. Chem., Int. Ed.,
2009, 48, 4414.
11 Examples using other transition-metal-catalysts have also been
reported by several groups, see: (a) C. Qin, J. Chen, H. Wua,
J. Cheng, Q. Zhang, B. Zuo, W. Su and J. Ding, Tetrahedron Lett.,
2008, 49, 1884; (b) F. Weng, C. Wang and B. Xu, Tetrahedron
Lett., 2010, 51, 2593; (c) Y. Liao and Q.-S. Hu, J. Org. Chem.,
2010, 75, 6986.
12 H. Li, W. Wei, Y. Xu, C. Zhang and X. Wan, Chem. Commun.,
2011, 47, 1497.
13 For representative examples on this topic, see: (a) K. P. Vora,
C. F. Lochow and R. G. Miller, J. Organomet. Chem., 1980,
192, 257; (b) T. B. Marder, D. C. Roe and D. Milstein,
Organometallics, 1988, 7, 1451; (c) D. P. Fairlie and B. Bosnich,
Organometallics, 1988, 7, 936; (d) C. P. Legens, P. S. White and
M. Brookhart, J. Am. Chem. Soc., 1998, 120, 6965; (e) T. Kondo,
N. Hiraishi, Y. Morisaki, K. Wada, Y. Watanabe and T. Mitsudo,
Organometallics, 1998, 17, 2131.
Reduction product, 2-naphthalenemethanol, was achieved
in 29% yield in the absence of pinacolone, which implies that
the insertion of 2-naphthaldehyde into the ruthenium-hydrogen
bond of hydridoruthenium complex C is involved in the
transformation (eqn (7), see supporting informationw).
In summary, we have described a new protocol for synthesis
of arylketones by ruthenium-catalyzed cross-coupling of
aldehydes with arylboronic acids. The reaction is effective
for aliphatic and aromatic aldehydes. More detailed investigations
into mechanisms and further applications of this methodology
are now in progress in our laboratory.
14 For transmetalation of boron compound to ruthenium complex,
see: (a) F. Kakiuchi, S. Kan, K. Igi, N. Chatani and S. Murai,
J. Am. Chem. Soc., 2003, 125, 1698; (b) F. Kakiuchi, M. Usui,
S. Ueno, N. Chatani and S. Murai, J. Am. Chem. Soc., 2004,
126, 2706; (c) F. Kakiuchi, Y. Matsuura, S. Kan and N. Chatani,
J. Am. Chem. Soc., 2005, 127, 5936; (d) S. J. Pastine, D. V. Gribkov
and D. Sames, J. Am. Chem. Soc., 2006, 128, 14220; (e) see ref. 11
and 12.
c
7882 Chem. Commun., 2011, 47, 7880–7882
This journal is The Royal Society of Chemistry 2011