492 Letters in Drug Design & Discovery, 2010, Vol. 7, No. 7
Costa et al.
growth of human cancer cell lines and on the proliferation of hu-
man lymphocytes in vitro. Helv. Chim. Acta, 2002, 85, 2862-2876.
Nguyen, H.T.; Lallemand, M.-C.; Boutefnouchet, S.; Michel, S.;
Tillequin, F. Antitumor Psoropermum xanthones and Sarcomeli-
cope Acridones: privileged structures implied in DNA alkylation. J.
Nat. Prod., 2009, 72, 527-539.
Castanheiro, R.A.P.; Pinto, M.M.; Cravo, S.M.M.; Pinto,
D.C.G.A.; Silva, A.M.S.; Kijjoa, A. Improved methodologies for
synthesis of prenylated xanthones by microwave irradiation and
combination of heterogeneous catalysis (K10 clay) with microwave
irradiation. Tetrahedron, 2009, 65, 3848-3857.
cells)ꢀ100)] as described elsewhere [34]. Doxorubicin was
used as a positive control and tested in the same manner.
[10]
[11]
CONCLUSION
The synthesis of two new sulfated xanthones was suc-
cessfully achieved by using sulfur trioxide-pyridine adduct
in dimethylacetamide. Though, these new compounds did
not exhibit an in vitro growth inhibitory effect on the human
tumor cell line tested, they represent the new class of xan-
thonic derivatives waiting for other models of biological
evaluation, such as anticoagulant activity in which sulfated
small molecules have promising representatives [36].
[12]
Hejaz, H.A.; Woo, L.W.; Purohit, A.; Reed, M.J.; Potter, B.V.
Synthesis, in vitro and in vivo activity of benzophenone-based in-
hibitors of steroid sulfatase. Bioorg. Med. Chem., 2004, 12, 2759-
2772.
[13]
[14]
Di, H.; Feng, Y.; Lihong H.; Ping L. Sulfonated xanthones from
Hypericum sampsonii. Phytochemistry, 2004, 65, 2595–2598.
Epifano, F.; Genovese, S.; Menghini, L. Chemistry and pharmacol-
ogy of oxyprenylated secondary metabolites. Phytochemistry,
2007, 68, 939-953.
Pecchio, M.; Solis, P.N.; Lopez-Perez, J.L.; Vasquez, Y.; Rodri-
guez, N.; Olmedo, D.; Correa, M.; San Feliciano, A.; Gupta, M.P.
Cytotoxic and antimicrobial benzophenones from the leaves of To-
vomita longifolia. J. Nat. Prod., 2006, 69, 410-413.
Kralj, A.; Kehraus, S.; Krick, A.; Eguereva, E.; Kelter, G.; Maurer,
M.; Wortmann, A.; Fiebig, H.H.; König, G.M. Arugosins G and H:
Prenylated polyketides from the marine-derived fungus Emericella
nidulans var. acristata. J. Nat. Prod., 2006, 69, 995-1000.
Tanaka, N.; Takaishi, Y.; Shikishima, Y.; Nakanishi, Y.; Bastow,
K.; Lee, K-H.; Honda, G.; Ito, M.Takeda, Y.; Kodzhimatov, O.K.;
Ashurmetov, O. Prenylated Benzophenones and Xanthones from
Hypericum scabrum. J. Nat. Prod., 2004, 67, 1870-1875.
Chaturvedula, V.S.P.; Schilling, J.K.; Kingston, D.G.I. New cyto-
toxic coumarins and prenylated benzophenone derivatives from the
bark of Ochrocarpus punctatus from the Madagascar rainforest. J.
Nat. Prod., 2002, 65, 965-972.
Santos, M.H.; Nagem, T.J.; Oliveira, T.T.; Braz-Filho, R. 7-
Epiclusianone, the new tetraprenylated benzophenone and others
chemical constituents from the fruits of Rheedia gardneriana.
Quím. Nova, 1999, 22, 654-660.
Diaz-Carballo, D.; Malak, S.; Freistühler, M.; Elmaagacli, A.;
Bardenheuer, W.; Reusch, H.P. Nemorosone blocks proliferation
and induces apoptosis in leukemia cells. Int. J. Clin. Pharmacol.
Ther., 2008, 46, 428-439.
Díaz-Carballo, D.; Malak, S.; Bardenheuer, W.; Freistuehler, M.;
Reusch, H.P. Cytotoxic activity of nemorosone in neuroblastoma
cells. J. Cell. Mol. Med., 2008, 12, 2598-2608.
Cuesta-Rubio, O.; Frontana-Uribe, B.A.; Ramirez-Apan, T.;
Cardenas, J. Polyisoprenylated benzophenones in Cuban propolis;
biological activity of nemorosone. Z. Naturforsch. [C], 2002, 57,
372-378.
On the contrary, introduction of the hydrophobic groups
to the benzophenone scaffold (7 and 8) was found to enhance
the in vitro growth inhibitory effect, in a micromolar range,
on the human tumor cells, especially the MFC-7 ER(+). The
activity exhibited by these two derivatives provides an inter-
esting clue for further molecular modifications to be per-
formed in order to improve their potency.
[15]
[16]
[17]
[18]
[19]
[20]
ACKNOWLEDGEMENTS
We thank Fundação para a Ciência e a Tecnologia (FCT)
for the financial support to this work (I&D 4040/2007) and
for the PhD grant to Elisangela Costa (SFRH/BD/30615/
2006). We thank Sara Cravo for technical support.
SUPPLEMENTARY MATERIAL
Supplementary material is available on the publishers
Web site along with the published article.
REFERENCES
[1]
Pinto, M.M.M.; Sousa, E.; Nascimento, M.S.J. Xanthone derivati-
ves: new insights in biological activity. Curr. Med. Chem., 2005,
12, 2517-2538.
[21]
[22]
[2]
[3]
Fotie, J.; Bohle, S. Pharmacological and biological activities of
xanthones. Curr. Med. Chem. - Anti-Infect. Agents., 2006, 5, 15-31.
Pinto, M.M.M.; Castanheiro, R. In: Natural Products Chemistry,
Biochemistry and Pharmacology; Brahmachari, Ed.; Narosa Pub-
lishing House PVT. LTD.: West Bengal, India, 2009, Vol. 17, pp.
520-675.
[23]
[24]
Bohlmann, F.; Subita, A. Neue Phloroglucin-Derivate aus Leon-
tonyx-Arten sowie weitere Verbindungen aus Vertretern der Tribus
inuleae. Phytochemistry, 1978, 17, 1929-1934.
[4]
[5]
Pouli, N.; Marakos, P. Fused xanthone derivatives as antiprolifera-
tive agents. Anti Cancer Agents Med. Chem., 2009, 9, 77-98.
Franklin, G.; Conceição, L.F.R.; Kombrink, E.; Dias, A.C.P.
Xanthone biosynthesis in Hypericum perforatum cells provides an-
tioxidant and antimicrobial protection upon biotic stress. Phyto-
chemistry, 2009, 70, 65-73.
Anstead, G.M.; Carlson, K.E. The estradiol pharmacophore: ligand
structure-estrogen receptor binding affinity relationships and a
model for the receptor binding site. Steroids, 1997, 62, 268-303.
Duax, W.L.; Weeks, C.M. In: Estrogens in the Environment;
McLachlan, Ed.; North Holland: New York, 1980, pp. 11-31.
Blair, R.M.; Fang, H.; Branham, W.S.; Hass, B.S.; Dial, S.L.; Mo-
land, C.L.; Tong, W.; Shi, L.; Perkins, R.; Sheehan, D.M. Estrogen
receptor relative binding affinities of 188 natural and xenochemi-
cals: structural diversity of ligands. Toxicol. Sci., 2000, 54, 138-
153.
Pinto, M.M.; Sousa, E.; Correia-da-Silva, M.; Marques, F.; Car-
valho, F. Xantonas sulfatadas e análogos xantónicos glicosilados
sulfatados com actividade anticoagulante e processos para a sua
preparação. Portuguese Patent 104739, March 09, 2011.
Everett, G.E. The reactions of sulfur trioxide, and of its adducts,
with organic compounds. Chem. Rev., 1962, 62, 549-589.
Kappe, C.O.; Murphree, S.; Dallinger, D. Practical Microwave
Synthesis for Organic Chemists: Strategies, Instruments, and Pro-
tocols; Wiley-Vch Verlag GmbH & Co. KGaA: Weinheim, 2009.
Pinto, M.M.M.; Castanheiro, R. Synthesis of Prenylated Xantho-
nes: An Overview. Curr. Org. Chem., 2009, 13, 1215-1240.
Jeso, V.; Nicolaou, K.C. Total synthesis of tovophyllin B. Tetra-
hedron Lett., 2009, 50, 1161-1163.
[25]
[26]
[6]
Castanheiro, R.A.P.; Pinto, M.M.; Silva, A.M.S.; Cravo, S.M.M.;
Gales, L.; Damas, A.M.; Nazareth, N.; Nascimento, M.S.J.; Eaton,
G. Dihydroxyxanthones prenylated derivatives: synthesis, structure
elucidation and growth inhibitory activity on human tumor cell
lines with improvement of selectivity for MCF-7. Bioorg. Med.
Chem., 2007, 15, 6080-6088.
[27]
[7]
[8]
[9]
Sousa, E.; Paiva, A.; Nazareth, N.; Gales, L.; Damas, A.M.; Nas-
cimento, M.S.J.; Pinto, M.M. Bromoalkoxyxanthones as promising
antitumor agents: synthesis, crystal structure and effect on human
tumor cell lines. Eur. J. Med. Chem., 2009, 44, 3830-3835.
Pedro, M.; Cerqueira, F.; Sousa, M.E.; Nascimento, M.S.J.; Pinto,
M.M. Xanthones as inhibitors of growth of human cancer cell lines
and their effects on the proliferation of human lymphocytes in vi-
tro. Bioorg. Med. Chem., 2002, 10, 3725-3730.
[28]
[29]
Sousa, E.; Silva, A.M.S.; Pinto, M.M.M.; Pedro, M.M.; Cerqueira,
F.A.M.; Nascimento, M.S.J. Isomeric kielcorins and dihydroxyxan-
thones: synthesis, structure elucidation and inhibitory activities of
[30]
[31]