attractive synthetic targets.2 However, a complete total
synthesis has not yet been reported.
Our retrosynthetic analysis of superstolide A (1) is shown
in Scheme 1. Disconnections at C2-C3, C6-C7, and C19-
fragment 3. Compound 7 was envisaged to be formed via
an asymmetric double Michael reaction between 9 and the
cross-conjugated dienolate 10 derived from compound 11.
The major advantage of this double Michael approach might
be that it could take place at low temperature and give a
product with predominately endo selectivity as well as
excellent diastereofacial selectivity.3
Scheme 1. Retrosynthetic Analysis of Superstolide A
(R)-4-tert-Butyldimethyl-silyloxy-2-cyclohexen-one 11 is
a very useful building block that has been used in organic
synthesis on a number of occasions.4 The advantage of using
this compound as a starting material resides in the excellent
diastereoselectivity often observed in its conjugate additions
since all stereochemistry is introduced by communication
from the stereogenic center at the C-4 position of compound
11. However, to the best of our knowledge, asymmetric
double Michael reactions employing cross-conjugated di-
enolate 10 derived from compound 11 have never been
reported previously.
An enzymatic literature procedure was modified to prepare
compound 11 (Scheme 2).5 Bromination of cis-1,4-diacetoxy-
Scheme 2. Asymmetric Synthesis of
(R)-4-tert-Butyldimethyl-silyloxy-2-cyclohexen-one
2-cyclohex-ene 126 gave the trans-dibromo compounds 13a
and 13b in 95% yield. Asymmetric hydrolysis of 13 by
C20 reveal three key fragments 3-5 with intramolecular
Horner-Wadsworth-Emmons olefination, Julia-Kocienski
olefination, and Suzuki (or Stille) coupling playing crucial
roles in the synthetic strategy. Fragment 4 (C20-C26) of
superstolide A was successfully synthesized employing
Brown’s asymmetric crotylboronate methodology.2b Herein,
we report our synthetic studies toward the construction of
fragment 3, the cis-decalin portion of the molecule.
Fragment 3 is the core structure of the molecule. It is
highly functionalized with six stereogenic carbons, including
one quaternary carbon (Scheme 1). Disconnection at C13-
C14 would be a crucial step. An anionic oxy-Cope rear-
rangement of 7 was expected to give the cis-fused bicyclic
6, which after functional group manipulation would lead to
(3) (a) Ihara, M.; Fukumoto, K. Angew. Chem., Int. Ed. Engl. 1993, 32,
1010 and references therein. (b) Ihara, M.; Makita, K.; Tokunaga, Y.;
Fukumoto, K. J. Org. Chem. 1994, 59, 6008 and references therein. (c)
Lee, R. A. Tetrahedron Lett. 1973, 14, 3333. (d) Nagaoka, H.; Kaoru, K.;
Okamura, T.; Yamada, Y. Tetrahedron Lett. 1987, 28, 6641. (e) Nagaoka,
H.; Shibuya, K.; Kobayashi, K.; Miura, I.; Muramatsu, M.; Yamada, Y.
Tetrahedron Lett. 1993, 34, 4039. (f) Maiti, S.; Bhaduri, S.; Achari, B.;
Banerjee, A. K.; Nayak, N. P.; Mukherjee, A. K. Tetrahedron Lett. 1996,
37, 8061. (g) Hagiwara, H.; Yamada, Y.; Sakai, H.; Suzuki, T.; Ando, M.
Tetrahedron 1998, 54, 10999. (h) Hagiwara, H.; Endou, S.; Fukushima,
M.; Hoshi, T.; Suzuki, T. Org. Lett. 2004, 6, 1115.
(4) (a) Danishefsky, S. J.; Simoneau, B. J. Am. Chem. Soc. 1989, 111,
2599. (b) Jones, A. B.; Yamaguchi, M.; Patten, A.; Danishefsky, S. J.;
Ragan, J. A.; Smith, D. B.; Schreiber, S. L. J. Org. Chem. 1989, 54, 17.
(5) Kazlauskas, R. J.; Weissfloch, A. N. E.; Rappaport, A. T.; Cuccia.
L. A. J. Org. Chem. 1991, 56, 2656. For asymmetric synthesis of 4-hydroxy-
2-cyclohexenone, see also: (a) Audia, J. E.; Boisvert, L.; Patten, A. D.;
Villalobos, A.; Danishefsky, S. J. J. Org. Chem. 1989, 54, 3738. (b) Gebauer,
O.; Bruckner, R. Liebigs Ann. 1996, 1559. (c) Carren˜o, M. C.; Garc´ıa Ruano,
J. L.; Garrido, M.; Ruiz, M. P.; Solladie´, G. Tetrahedron Lett. 1990, 31,
6653. (d) Brunjes, R.; Tilstam, U.; Winterfeldt, E. Chem. Ber. 1991, 124,
1677. (e) Evarts, J. B, Jr.; Fuchs, P. L. Tetrahedron Lett. 2001, 42, 3673.
(f) Demir, A. S.; Ozge, S. Org. Lett. 2002, 4, 2021. (g) Morgan, B. S.;
Hoenner, D.; Evans, P.; Roberts, S. M. Tetrahedron: Asymmetry 2004,
15, 2807.
(2) (a) Roush, W. R.; Champoux, J. A.; Peterson, B. C. Tetrahedron
Lett. 1996, 37, 8989. (b) Yu, W.; Zhang, Y.; Jin, Z. Org. Lett. 2001,
3, 1447. (c) Zampella, A.; D’Auria, M. V. Tetrahedron: Asymmetry
2001, 12, 1543. (d) Roush, W.; Hertel, L.; Schnaderbeck, M. J.; Yakelis,
N. A. Tetrahedron Lett. 2002, 43, 4885. (e) Yakelis, N.; Roush, W. R.
J. Org. Chem. 2003, 68, 3838. (f) Solsona, J. G.; Romea, P.; Urpi, F.
Org. Lett. 2003, 5, 4681. (g) Paterson, I.; Mackay, A. C. Synlett 2004,
1359. (h) Marshall, J. A.; Mulhearn, J. J. Org. Lett. 2005, 7, 1593-1596.
(6) Ba¨ckvall, J. E.; Gatti, R.; Schink, H. E. Synthesis 1993, 343.
1940
Org. Lett., Vol. 7, No. 10, 2005