ORGANIC
LETTERS
2011
Vol. 13, No. 18
4786–4789
Stereoselective Synthesis of F-Ring
Saturated Estrone-Derived Inhibitors
of Hedgehog Signaling Based on
Cyclopamine
†
‡
†
‡
ꢀ
Zhihui Zhang, Valerie Baubet, Christian Ventocilla, Chaomei Xiang,
Nadia Dahmane,*,‡ and Jeffrey D. Winkler*,†
Department of Chemistry, The University of Pennsylvania, Philadelphia,
Pennsylvania 19104, United States, and The Wistar Institute, Molecular and Cellular
Oncogenesis Program, Philadelphia, Pennsylvania 19104, United States
winkler@sas.upenn.edu; ndahmane@wistar.org
Received July 5, 2011
ABSTRACT
Previous work in this laboratory established that the readily available F-ring aromatic analog of cyclopamine is a highly potent inhibitor of
Hedgehog signaling. The synthesis and biological evaluation of two F-ring saturated analogs that are more potent than the F-ring aromatic
structure are reported.
Some time ago it was found that ingestion of the
California corn lily, veratrum californicum, by pregnant
sheep could induce cyclopia and other profound develop-
mental defects in the offspring. Keeler and co-workers
established that the active constituent in the plant is the
alkaloid cyclopamine 1 (Figure 1),1 and it was later found
that cyclopamine mediates this effect by interfering with
Sonic Hedgehog (SHH) signaling,2 specifically via the
inhibition of the transmembrane protein Smoothened
(SMO).3 SHH signaling is active in the majority of spora-
dic basal cell carcinomas4 and also in brain tumors,
including medulloblastomas and gliomas.5 This signaling
pathway has also been linked to melanoma,6 lung
adenocarcinoma,7 as well as prostate,8 small cell lung,9
and pancreatic cancer.10 As a result, the development of
inhibitors of the SHH cellular signaling pathway has
emerged as an important goal in medicinal chemistry.
The most common strategy in the pharmaceutical industry
† The University of Pennsylvania.
(6) Stecca, B.; Mas., C.; Clement, V.; Zbinden, M.; Correa, R.;
Piguet, V.; Beermann, F.; Ruiz, A. Proc. Natl. Acad. Sci. U.S.A. 2007,
104, 5895–5900.
‡ The Wistar Institute.
(1) (a) Binns, W.; James, L.; Keeler, R.; Balls, L. Cancer Res. 1968,
28, 2323–6. (b) Keeler, R.; Binns, W. Can. J. Biochem. 1966, 44, 829–838.
(2) Cooper, M.; Porter, J.; Young, K.; Beachy, P. Science 1998, 280,
1603–1607. (b) Incardona, J.; Gaffield, W.; Kapur, R.; Roelink, H.
Development 1998, 125, 3553–3562.
(3) Chen, J.; Taipale, J.; Cooper, M.; Beachy, P. Genes Dev. 2002,
1627, 43–48.
(4) Dahmane, N.; Lee, J.; Robbins, P.; Heller, P.; Ruiz, A.; Altaba, I.
Nature 1997, 389, 876–881.
(5) (a) Berman, D.; Karhadkar, S.; Hallahan, A.; Pritchard, J.;
Eberhart, C.; Watkins, D.; Chen, J.; Taipale, J.; Olson, J.; Beachy, P.
Science 2002, 297, 1559–1561. (b) Clement, V.; Sanchez, P.; de Tribolet,
N.; Radovanovic, I.; Ruiz i Altaba, A. Curr. Biol. 2007, 17, 165–172.
(c) Dahmane, N.; Sanchez, P.; Gitton, Y.; Palma, V.; Sun., T.; Beyna,
M.; Weiner, H.; Ruiz i Altaba, A. Development 2001, 128, 5201–5212.
(7) Yuan, Z.; Goetz, J.; Singh, S.; Ogden, S.; Petty, W.; Black, C.;
Memoli, V.; Dmitrovsky, E.; Robbins, D. Oncogene 2007, 26, 1046–1055.
(8) (a) Karhadkar, S.; Bova, G.; Abdallah, N.; Dhara, S.; Gardner,
D.; Maitra, A.; Isaacs, J.; Berman, D.; Beachy, P. Nature 2004, 431, 707–
712. (b) Sanchez, P.; Hernandez, A.; Stecca, B.; Kahler, A.; DeGueme,
A.; Barrett, A.; Beyna, M.; Datta, M.; Datta, S.; Ruiz, A. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 12561–12566. (c) Sheng, T.; Li, C.; Zhang,
X.; Chi, S.; He, N.; Chen, K.; McCormick, F.; Gatalica, Z.; Xie, J. Mol.
Cancer 2004, 3, 29.
(9) Watkins, D.; Berman, D.; Burkholder, S.; Wang, B.; Beachy, P.;
Baylin, S. Nature 2003, 422, 313–317.
(10) Berman, D.; Karhadkar, S.; Maitra, A.; Montes, D.; Gerstenblith,
M.; Briggs, K.; Parker, A.; Shimada, Y.; Eshleman, J.; Watkins, D.;
Beachy, P. Nature 2003, 425, 846–851.
r
10.1021/ol2017966
Published on Web 08/15/2011
2011 American Chemical Society