have been reported with transition metals9a such as Pd,9
Cu,10 Ag,11 W,12 Mo,12 Au,13 and Ru13b as well as with
Ce,16 Bronsted acids,14 and strong bases.15
Table 1. Optimization of Lewis Acid Mediated Cyclization to
Oxaza Heterocyclesa,b
Scheme 1. Synthetic Approach to Oxazolines and Oxazoles
time temp 5a yield 6a yield
entry reagent
solvent
(h)
(°C)
(%)
(%)
1
CuI
CH2Cl2
CH2Cl2
CH2Cl2
DMF
24
24
24
16
12
12
4
rt
À
À
However, some of the above-reported methods suffer
from one or more limitations such as low yield, poor regio-
selectivity, prolonged reaction time, and expensive cata-
lysts in most cases. Therefore development of mild, econom-
ical, and complementary approaches to oxaza heterocycle
derivatives is still highly desired due to their extreme
significance.
In recent decades, Zn17 and Fe18 based catalysts have
risen significantly in popularity to promote a broad range
of organic transformations, owing to their abundance,
affordability, and environmental friendliness. We herein
report a novel ZnI2 and FeCl3 promoted cyclization via a
CÀO bond formation for selective synthesis of substituted
oxazoline and oxazole heterocycles from acetylenic amide.
It is important to note that this is an inexpensive, regiose-
lective, alternative, and efficient approach in a 5-exo-dig
cyclization mode.
The construction of oxaza heterocycles was initiated
with N-Prop-2-ynyl-benzamide 4a as the substrate. We
first examinedthe ability of variousLewisacids topromote
the formation of oxaza heterocycles. When 4a was treated
with stoichiometric CuI, CuCl2, and CuSO4 in CH2Cl2,
there was no significant change in the reaction after 24 h at rt
(Table 1, entries 1À3). To our delight, 4a gave a dimerized
2
CuCl2
CuSO4
CuI
rt
À
À
3
rt
À
À
4c,d
5
rt
À
À
ZnCl2
ZnBr2
ZnI2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
toluene
1,2-DCE
1,2-DCE
CH3CN
toluene
THF
rt
75
72
93
À
traceh
traceh
À
6
rt
7
rt
8
FeCl3
À
24
24
24
16
24
16
24
16
24
24
2
rt
40
À
9
130
80
rt
traces
À
10
11
12
13
14
15e
16f
17
18
19
20
21
22
23e
24f
25g
26c
À
À
ZnI2
84
traces
85
68
85
68
À
À
ZnI2
rt
À
ZnI2
rt
À
ZnI2
rt
À
ZnI2
CH2Cl2
CH2Cl2
CH2Cl2
1,2-DCE
THF
rt
À
ZnI2
rt
À
FeCl3
FeCl3
FeCl3
FeCl3
FeCl3
FeCl3
FeCl3
FeCl3
FeCl3
FeCl3
45
80
65
80
80
80
80
80
80
80
64
90
À
À
2
À
toluene
CH3CN
1,2-DME
1,2-DCE
1,2-DCE
1,2-DCE
1,2-DCE
2
À
86
66
70
96
87
81
78
24
20
2
À
À
À
3
À
12
12
À
À
a All reactions were carried out in 1 mmol of 4a, 1 equiv of reagent,
and 2 mL of solvent unless otherwise noted. b For optimization, 4a was
isolated and studied. c 10 mol % of reagent. d Dimer of 4a. e 50 mol % of
reagent. f 30 mol % of reagent. g 20 mol % of reagent. h By 1H NMR.
(11) Harmata, M.; Huang, C. Synlett 2008, 1399–1401.
(12) Meng, X.; Meng, S. Org. Biomol. Chem. 2011, 9, 4429–4431.
(13) (a) Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org.
Lett. 2004, 6, 4391–4394. (b) Milton, M. D.; Inada, Y.; Nishibayashi, Y.;
Uemura, S. Chem. Commun. 2004, 2712–2713. (c) Hashmi, A. S. K.;
Rudolph, M.; Schymura, S.; Visus, J.; Frey, W. Eur. J. Org. Chem.
2006, 4905–4909. (d) Aguilar, D.; Contel, M.; Navarro, R.; Soler, T.;
Urriolabeitia, E. P. J. Organomet. Chem. 2008, 486–493. (e) Hashmi,
A. S. K.; Schuster, A. M.; Rominger, F. Angew. Chem., Int. Ed. 2009, 48,
8247–8249. (f) Weyrauch, J. P.; Hashmi, A. S. K.; Schuster, A. M.;
Hengst, T.; Schetter, S.; Littmann, A.; Rudolph, M.; Hamzic, M.; Visus,
J.; Rominger, F.; Frey, W.; Bats, J. W. Chem.;Eur. J. 2010, 16, 956–
963. (g) Hashmi, A. S. K.; Schuster, A. M.; Schmuck, M.; Rominger, F.
Eur. J. Org. Chem. 2011, 4595–4602. (h) Egorova, A. O.; Seo, H.; Kim,
Y.; Moon, D.; Rhee, Y. M.; Ahn, K. H. Angew. Chem., Int. Ed. 2011, 50,
11446–11450.
(14) Merkul, E.; Muller, J. J. T. Chem. Commun. 2006, 4817–4819.
(15) (a) Nilsson, B. M.; Hacksell, U. J. Heterocycl. Chem. 1989, 26,
269–275. (b) Nilsson, B. M.; Vargas, H. M.; Ringdahl, B.; Hacksell, U.
J. Med. Chem. 1992, 35, 285–294. (c) Araki, H.; Inoue, M. Synlett 2006,
555–558.
(16) Bartoli, G.; Cimarelli, C.; Cipolletti, R.; Diomedi, S.; Giovannini,
R.; Mari, M.; Marsili, L.; Marcantoni, E. Eur. J. Org. Chem. 2012,
630–636.
product in quantitative yield using 10 mol % of CuI and
DMF as a solvent (entry 4). Further reaction of 4a with
stoichiometric ZnCl2 and ZnBr2 produced the required
compound 5a in 75% and 72% yields respectively at rt
after 12 h (entries 5 and 6). Interestingly, the best yield of
5a was obtained when 1 equiv of ZnI2 was used, and the
reaction was complete within 4 h at rt to give a 93% yield
(entry 7). Surprisingly, we found that 4a on reaction with
stoichiometric anhyd. FeCl3 gave exclusively 6a in 40%
yield after 24 h at rt using CH2Cl2 (entry 8). Various
solvents were screened to examine the feasibilty of the
reaction with ZnI2 (entries 7, 11À14), and we observed
that the reaction proceeded well in CH2Cl2 as solvent
(entry 7). We also examined the reaction with 0.5 and
0.3 equiv of ZnI2 and observed that 0.5 equiv of ZnI2 gave
an 85% yield after 16 h (entries 15 and 16).
(17) (a) Malosh, C. F.; Ready, J. M. J. Am. Chem. Soc. 2004, 126,
10240–10241. (b) Patil, N. T.; Singh, V. Chem. Commun. 2011, 47,
11116–11118. (c) Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Angew.
Chem., Int. Ed. 2011, 50, 11446–11450.
(18) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2008, 47,
2304–2307.
The promising result obtained from FeCl3 (Table 1,
entry 8) inspired us to further investigate the reaction
conditions for a complete conversion of compound 4a.
Org. Lett., Vol. 14, No. 17, 2012
4479