Journal of the American Chemical Society
Page 4 of 6
(a) van Asselt, A.; Burger, B. J.; Gibson, V. C.; Bercaw, J. E. J. Am.
Supporting Information. Preparative methods, spectral,
and analytical data. This material is available free of charge
Chem. Soc. 1986, 108, 5347–5349. (b) Haddleton, D. M.; Perutz, R. N.
J. Chem. Soc. Chem. Commun. 1986, 1734–1736. (c) Beckhaus, R.;
Thiele, K. H.; Str6hl, D. J. Organomet. Chem. 1989, 369, 43-54. (d)
Oliván, M.; Eisenstein,O.; Caulton, K. G. Organometallics 1997, 16,
2227–2229. (e) Olián, M.; Clot, E.; Eisenstein, O.; Caulton, K. G.
Organometallics 1998, 17, 3091–3100. (f) Huang, D.; Folting, K.;
Caulton, K. G. J. Am. Chem. Soc. 1999, 121, 10318–10322. (g) Es-
teruelas, M. A.; Hernández, Y. A.; Lopéz, A. M.; Oliván, M.; Oñate,
E. Organometallics 2005, 24, 5989–6000.
1
2
3
4
5
6
7
AUTHOR INFORMATION
Corresponding Author
ORCID
8
9
(7) 1,3-H migration of alkenylmetallic species to the nitrogen of
azavinylidene ligand of Os complex was reported. Castarlenas, R.;
Esteruelas, M. A.; Oñate, E. Organometallics 2000, 19, 5454–5463.
(8) (a) Tokunaga, M.; Suzuki, T.; Koga, N.; Fukushima, T.; Hori-
uchi, A.; Wakatsuki, Y. J. Am. Chem. Soc. 2001, 123, 11917–11924.
(b) Arndt, M.; Salih, K. S. M.; Fromm, A.; Goossen, L. J.; Menges,
F.; Niedner-Schatteburg, G. J. Am. Chem. Soc. 2011, 133, 7428–7449.
(c) Maity, B.; Goossen, L. J.; Koley, D. Chem. Sci. 2015, 6, 2532–
2552. (d) Maity, B.; Koley, D. ChemCatChem 2018, 10, 566–580.
(9) Sogo, H.; Iwasawa, N. Angew. Chem. Int. Ed. 2016, 55, 10057–
10060.
(10) For reviews on rhenium-catalyzed reactions, see: (a) Kunino-
bu, Y.; Takai, K. Chem. Rev. 2011, 111, 1938–1953. (b) Mao, G.;
Huang, Q.; Wang, C. Eur. J. Org. Chem. 2017, 2017, 3549–3564.
(11) For examples of catalytic reactions utilizing rhenium vinyli-
dene complexes, see: (a) Fukumoto, Y.; Daijo, M.; Chatani, N. J. Am.
Chem. Soc. 2012, 134, 8762–8765. (b) Xia, D.; Wang, Y.; Du, Z.;
Zheng, Q.-Y.; Wang, C. Org. Lett. 2012, 14, 588–591. (c) Hori, S.;
Murai, M.; Takai, K. J. Am. Chem. Soc. 2015, 137, 1452–1457. (d)
Murai, M.; Uemura, E.; Hori, S.; Takai, K. Angew. Chem. Int. Ed.
2017, 56, 5862–5866.
Nobuharu Iwasawa: 0000-0001-6323-6588
Note
The authors declare no competing financial interest.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
This research was supported by a Grant-in-Aid for Scien-
tific Research on Innovative Areas "Precise Formation of a
Catalyst Having a Specified Field" (No. 15H05800) from
the Ministry of Education, Culture, Sports, Science, and
Technology of Japan. H. S. thanks JSPS for a fellowship.
REFERENCES
(1) For reviews of vinylidene complexes, see: (a) Bruce, M. I.
Chem. Rev. 1991, 91, 197–257. (b) Bruneau, C.; Dixneuf, P. H. Acc.
Chem. Res. 1999, 32, 311–323. (c) Bruneau, C.; Dixneuf, P. H. An-
gew. Chem. Int. Ed. 2006, 45, 2176–2203. (d) “Metal Vinylidenes and
Allenylidenes in Catalysis”, ed by Bruneau, C.; Dixneuf, P. H. Wiley-
VCH, Weinheim (2008). (e) Trost, B. M.; McClory, A. Chem. Asian J.
2008, 3, 164–194. (f) Lynam, J. M. Chem. Eur. J. 2010, 16, 8238–
8247.
(2) For recent examples of catalytic anti-Markovnikov addition re-
actions utilizing vinylidene complex intermediates generated from
terminal alkynes, see: (a) Lumbroso, A.; Vautravers, N. R.; Breit, B.
Org. Lett. 2010, 12, 5498–5501. (b) Kondo, M.; Kochi, T.; Kakiuchi,
F. J. Am. Chem. Soc. 2011, 133, 32–34. (c) Das, U. K.; Mandal, S.;
Anoop, A.; Bhattacharjee, M. J. Org. Chem. 2014, 79, 9979–9991. (d)
Srivastava, A.; Patel, S. S.; Chandna, N.; Jain, N. J. Org. Chem. 2016,
81, 11664–11670. (e) Takano, S.; Kochi, T.; Kakiuchi, F. Organome-
tallics 2016, 35, 4112–4125. (f) Fukumoto, Y.; Tamura, Y.; Iyori, Y.;
Chatani, N. J. Org. Chem. 2016, 81, 3161–3167.
(12) Recently, Re(I)-catalyzed 1,4-addition reaction of indole de-
rivatives to the α,β-unsaturated carbene complex intermediate gener-
ated from propargyl ether to give allylation products was reported.
Chen. J.; Wu, J. Chem. Sci. 2018, 9, 2489–2492.
(13) For representative examples of 1,4-addition reactions to α,β-
unsaturated carbene complex intermediates generated through elec-
trophilic activation of alkynes, see: (a) Amijs, C. H. M.; López-
Carrillo, V.; Echavarren, A. M. Org. Lett. 2007, 9, 4021–4024. (b)
Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 12598–12599. (c)
Saito, K.; Sogou, H.; Suga, T.; Kusama, H.; Iwasawa, N. J. Am. Chem.
Soc. 2011, 133, 689–691. (d) Shu, D.; Song, W.; Li, X.; Tang, W.
Angew. Chem. Int. Ed. 2013, 52, 3237–3240. (e) Yang, W.; Wang, T.;
Yu, Y.; Shi, S.; Zhang, T.; Hashmi, A. S. K. Adv. Synth. Catal. 2013,
355, 1523–1528. (f) Allegretti, P. A.; Ferreira, E. M. J. Am. Chem.
Soc. 2013, 135, 17266–17269. (g) Shu, D.; Winston-McPherson, G.
N.; Song, W.; Tang, W. Org. Lett. 2013, 15, 4162–4165. (h) Huynh,
K.; Seizert, C. A.; Ozumerzifon, T. J.; Allegretti, P. A.; Ferreira, E. M.
Org. Lett. 2017, 19, 294–297.
(3) For recent examples of cycloisomerization reactions utilizing
vinylidene complex intermediates generated from terminal alkynes,
see: (a) Chiang, P.-Y.; Lin, Y.-C.; Wang, Y.; Liu, Y.-H. Organome-
tallics 2010, 29, 5776-5782. (b) Ye, L.; Wang, Y.; Aue, D. H.; Zhang,
L. J. Am. Chem. Soc. 2012, 134, 31–34. (c) Liu, P. N.; Su, F. H.;
Wen, T. B.; Sung, H. H.-Y.; Williams, I. D.; Jia, G. Chem. Eur. J.
2010, 16, 7889–7897.
(14) The reaction of β-unsubstituted silyl enol ethers gave a con-
siderable amount of cyclopropanation products.
(4) For recent examples of other catalytic reactions utilizing vinyli-
dene complex intermediates generated from terminal alkynes, see: (a)
Hashmi, A. S. K.; Wieteck, M.; Braun, I.; Rudolph, M.; Rominger, F.
Angew. Chem. Int. Ed. 2012, 51, 10633–10637. (b) Ma, H.-W.; Lin,
Y.-C.; Huang, S.-L. Org. Lett. 2012, 14, 3846–3849. (c) Sakai, K.;
Kochi, T.; Kakiuchi, F. Org. Lett. 2013, 15, 1024–1027. (d) Johnson,
D. G.; Lynam, J. M.; Mistry, N. S.; Slattery, J. M.; Thatcher, R. J.;
Whitwood, A. C. J. Am. Chem. Soc. 2013, 135, 2222–2234. (e) Wang,
Y.; Zheng, Z.; Zhang, L. Angew. Chem. Int. Ed. 2014 53, 9572-9576.
(f) Zeng, H.; Li, C.-J. Angew. Chem. Int. Ed. 2014 53, 13862–13865.
(g) Kim, I.; Roh, S. W.; Lee, D. G.; Lee, C. Org. Lett. 2014, 16,
2482–2485. (h) Ma, H.-W.; Chen, P.-M.; Lo, J.-X.; Lin, Y.-C.; Huang,
S.-L.; Chen, C.-R.; Chia, P.-Y. J. Org. Chem. 2016 81, 4494–4505.
(5) For examples of vinylidene complex formation from
alkenylmetal halides through HX elimination, see: (a) Weinand, R.;
Werner, H. J. Chem. Soc., Chem. Commun. 1985, 1145–1146. (b)
Werner, H.; Weinand, R.; Knaup, W.; Peters, K.; von Schnering, H. G.
Organometallics 1991, 10, 3967–3977. See also; (c) Ipaktschi, J:
Uhlig, S: Dülmer, A. Organometallics 2001, 20, 4840-4846.
(15) For reviews on synthetic utilization of hydride transfer, see:
(a) Peng, B.; Maulide, N. Chem. Eur. J. 2013, 19, 13274–13287. (b)
Haibach, M. C.; Seidel, D. Angew. Chem. Int. Ed. 2014, 53, 5010–
5036. (c) Wang, L.; Xiao, J. Adv. Synth. Catal. 2014, 356, 1137–1171.
(16) For representative examples of catalytic reactions utilizing hy-
dride transfer to vinylidene complexes, see: (a) Datta, S.; Odedra, A.;
Liu, R.-S. J. Am. Chem. Soc. 2005, 127, 11606–11607. (b) Bajrachar-
ya, G. B.; Pahadi, N. K.; Gridnev, I. D.; Yamamoto, Y. J. Org. Chem.
2006, 71, 6204–6210. (c) A. Odedra, S. Datta, R.-S. Liu, J. Org.
Chem. 2007, 72, 3289–3292. (d) Vadola, P. A.; Sames, D. J. Am.
Chem. Soc. 2009, 131, 16525–16528. (e) Tobisu, M.; Nakai, H.;
Chatani, N. J. Org. Chem. 2009, 74, 5471–5475. (f) Wang, Y.; Zarca,
M.; Gong, L.-Z.; Zhang, L. J. Am. Chem. Soc. 2016, 138, 7516–7519.
(g) Klein, J. E. M. N.; Knizia, G.; dos Santos Comprido, L. N.; Käst-
ner, J.; Hashmi, A. S. K Chem. Eur. J. 2017, 23, 16097–16103.
(17) For examples of reversible vinylidene formation, see: (a)
Slugovc, C.; Sapunov, V. N.; Wiede, P.; Mereiter, K.; Schmid, R.;
Kirchner, K. J. Chem. Soc., Dalton Trans. 1997, 4209–4216. (b) Ca-
dierno, V.; Gamasa, M. P.; Gimeno, J.; González-Bernardo, C.; Pé-
(6) For examples of vinylidene complex formation from
alkenylmetallic species via α-H elimination (1,2-H migration), see:
ACS Paragon Plus Environment