Organometallics
Communication
Me2EtSiH, Me3SiH, and Et3SiH.28 Astonishingly, the transient
metal complex seemed to be restricted in the catalysis of
redistribution on the substitution pattern R3SiH without
forming R4Si and R2SiH2 species. Nonetheless, this work
represented the first catalytic alkyl redistribution reaction via an
assumed silyl−silylene intermediate. Just recently, Heinekey
and co-workers described the structural characterization of
[Et3Si−H−SiEt3][B(C6F5)4] (6).29 When 6 was dissolved in
benzene or toluene, the evolution of hydrogen gas and the
formation of tetraethylsilane was observed. The latter
observation clearly indicated a substituent redistribution.
Thus, Heinekey proposed “This suggests that the highly
reactive, Lewis acidic silylium species are promoting redis-
tribution of the ethyl groups. Further, the reaction appears to
be catalytic.”29
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Dr. Dirk Michalik is gratefully acknowledged for the attempted
low-temperature NMR experiments. Financial support by the
■
Universitat Rostock and the LIKAT is gratefully acknowledged.
̈
REFERENCES
■
(1) Reed, C. A. Acc. Chem. Res. 1998, 31, 325−332.
(2) Lambert, J. B.; Kania, L.; Zhang, S. Chem. Rev. 1995, 95, 1191−
1201.
With these results in mind, we can now explain the formation
of [(Me3Si)3NSi(H)Me2]+ instead of [(Me3Si)4N]+ in the
reaction of (Me3Si)3N with in situ generated [Me3Si·
(toluene)][B(C6F5)4] (3) (vide supra). In situ generated 3
(precipitation in toluene) always contains Me3SiH (Figure S3,
Supporting Information). In combination with Lewis acidic
[Me3Si]+ a methyl/hydrogen redistribution process at Me3SiH
can be considered as discussed above, leading to Me2SiH2 and
Me4Si dissolved in toluene. Now Me2SiH2 is easily activated by
formation of a [Me3Si−H−Si(H)Me2]+ cation (7+), as depicted
in Scheme 5.
(3) Lambert, J. B.; Zhao, Y.; Zhang, S. M. J. Phys. Org. Chem. 2001,
14, 370−379.
(4) Kim, K.-C.; Reed, C. A.; Elliott, D. W.; Mueller, L. J.; Tham, F.;
Lin, L.; Lambert, J. B. Science 2002, 297, 825−827.
(5) Lambert, J. B.; Zhang, S.; Ciro, S. M. Organometallics 1994, 13,
2430−2443.
(6) Lambert, J. B.; Zhang, S. J. Chem. Soc., Chem. Commun. 1993, 383.
(7) Ibad, M. F.; Langer, P.; Schulz, A.; Villinger, A. J. Am. Chem. Soc.
2011, 133, 21016−21027.
(8) Hoffmann, S. P.; Kato, T.; Tham, F. S.; Reed, C. A. Chem.
Commun. 2006, 767−769.
(9) Nava, M.; Reed, C. A. Organometallics 2011, 30, 4798−4800.
(10) Xie, Z.; Bau, R.; Benesi, A.; Reed, C. A. Organometallics 1995,
14, 3933−3941.
Scheme 5. Activation of Dimethylsilane by Formation of
Dimethylsilylium Ion 7+
(11) Kuppers, T.; Bernhardt, E.; Eujen, R.; Willner, H.; Lehmann, C.
̈
W. Angew. Chem., Int. Ed. 2007, 46, 6346−6349.
(12) Corey, J. Y.; West, R. J. Am. Chem. Soc. 1963, 85, 2430−2433.
(13) Bartlett, P. D.; Condon, F. E.; Schneider, A. J. Am. Chem. Soc.
1944, 66, 1531−1539.
(14) Lehmann, M.; Schulz, A.; Villinger, A. Angew. Chem., Int. Ed.
2009, 48, 7444−7447.
Dimethylsilylium ion 7+ is kinetically and thermodynamically
favored to bind to (Me3Si)3N by about −60.6 kJ mol−1 (cf.
[(Me3Si)3NSi(H)Me2]+, ΔH298 = −487.7; [(Me3Si)4N]+,
−427.1 kJ mol−1), affording the acid−base adduct
[(Me3Si)3NSi(H)Me2]+ and Me3SiH rather than the intended
homoleptic cation [(Me3Si)4N]+ and Me2SiH2. Hence, the
formation of [(Me3Si)3NSi(H)Me2]+ and its precipitation as a
[B(C6F5)4]− salt superimposes the described exchange
equilibria (Scheme 4, reactions A and B), leading to a new
equilibrium adjustment. By this equilibrium adjustment
consumed Me2SiH2 is reproduced. Furthermore, it can be
assumed that (Me3Si)3N as base itself may accelerate the Me/H
exchange.
The foregoing describes the synthesis and characterization of
the first persilylated ammonium cation in the salt
[(Me3Si)3NSi(H)Me2][B(C6F5)4]. The unexpected loss of
one methyl group during direct silylation of (Me3Si)3N led to
the discovery of a transition-metal-free silylium-catalyzed alkyl
scrambling process starting from Me3SiH and Et3SiH,
respectively. This scrambling process occurs if an excess of
silanes is present in the formation of silylium cations while
employing the standard Bartlett−Schneider−Condon type
reaction.6
(15) Schulz, A.; Villinger, A. Chem. Eur. J. 2010, 16, 7276−7281.
(16) Olah, G. A.; Li, X.-Y.; Wang, Q.; Rasul, G.; Prakash, G. K. S. J.
Am. Chem. Soc. 1995, 117, 8962−8966.
(17) Prakash, G.; Bae, C.; Wang, Q.; Rasul, G.; Olah, G. A. J. Org.
Chem. 2000, 65, 7646−7649.
(18) Ibad, M. F.; Langer, P.; Reiß, F.; Schulz, A.; Villinger, A. J. Am.
Chem. Soc. 2012, 134, 17757−17768.
(19) Driess, M.; Barmeyer, R.; Monse, C.; Merz, K. Angew. Chem., Int.
Ed. 2001, 40, 2308−2310.
(20) Muller, L. O.; Himmel, D.; Stauffer, J.; Steinfeld, G.; Slattery, J.;
̈
Santiso-Quinones, G.; Brecht, V.; Krossing, I. Angew. Chem., Int. Ed.
̃
2008, 47, 7659−7663.
(21) Wiberg, N.; Schmid, K. H. Z. Anorg. Allg. Chem. 1966, 345, 93−
105.
(22) Baumann, W.; Michalik, D.; Reiß, F.; Schulz, A.; Villinger, A.
Angew. Chem., Int. Ed. 2014, 53, 3250−3253.
(23) Pyykko, P.; Atsumi, M. Chem. Eur. J. 2009, 15, 12770−12779.
̈
(24) Schmidbaur, H. Chem. Ber. 1964, 97, 1639−1648.
(25) Schafer, A.; Reißmann, M.; Jung, S.; Schafer, A.; Saak, W.;
̈
̈
Brendler, E.; Muller, T. Organometallics 2013, 32, 4713−4722.
̈
(26) Schafer, A.; Reißmann, M.; Schafer, A.; Saak, W.; Haase, D.;
̈
̈
Muller, T. Angew. Chem., Int. Ed. 2011, 50, 12636−12638.
̈
́ ́ ́
(27) Muther, K.; Hrobarik, P.; Hrobarikova, V.; Kaupp, M.;
̈
Oestreich, M. Chem. Eur. J. 2013, 19, 16579−16594.
(28) Park, S.; Kim, B. G.; Gottker-Schnetmann, I.; Brookhart, M.
̈
ASSOCIATED CONTENT
* Supporting Information
ACS Catal. 2012, 2, 307−316.
(29) Connelly, S. J.; Kaminsky, W.; Heinekey, D. M. Organometallics
2013, 32, 7478−7481.
■
S
Text, tables, figures, and CIF and xyz files giving detailed
information about experiments and computations. This ma-
terial is available free of charge via the Internet at http://pubs.
D
dx.doi.org/10.1021/om500519j | Organometallics XXXX, XXX, XXX−XXX