Y. Kawato et al. / Tetrahedron 67 (2011) 6539e6546
6545
resulting mixture was stirred at 50 ꢁC for 2 h. The reaction mixture
was concentrated to remove THF, followed by coevaporation with
toluene two times. The crude residue was purified by flash chro-
matography (CH2Cl2/MeOH/Et3N, 95:4:1) to give amine 15 as col-
3. Reviews of direct catalytic asymmetric aldol reactions, see: (a) Shibasaki, M.;
Yoshikawa, N. Chem. Rev. 2002, 102, 2187; (b) Alcaide, B.; Almendros, P. Eur. J.
Org. Chem. 2002, 1595; (c) Notz, W.; Tanaka, F.; Barbas, C. F., III. Acc. Chem. Res.
2004, 37, 580; (d) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev.
2007, 107, 5471; (e) Trost, B. M.; Brindle, C. S. Chem. Soc. Rev. 2010, 39, 1600 See
also Ref. 1.
orless oil (41.2 mg, 87%). Colorless oil; IR (neat)
n 3374, 2981, 2938,
4. There are numerous examples of direct aldol reactions using aldol donors
2873, 1731, 1176 cmꢀ1 1H NMR (CDCl3)
;
d
4.25e4.19 (m, 1H),
bearing electron-withdrawing
mild basic conditions
a-substituents that are readily enolized under
3.98e3.92 (m, 1H), 2.80e2.77 (m, 2H), 2.39 (dd, J¼6.9, 15.1 Hz, 1H),
2.26 (dd, J¼6.2, 15.1 Hz, 1H), 1.95 (br s, 2H), 1.64e1.50 (m, 3H), 1.42
(s, 9H), 1.42 (s, 3H), 1.33 (s, 3H), 1.30e1.15 (m, 1H); 13C NMR (CDCl3)
5. For direct catalytic asymmetric aldol (-type) reactions using aldol donors at the
carboxylic acid oxidation state without electron-withdrawing -substituents:
a
(a) Alkylnitriles: Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2005, 7,
3757; (b) Activated amides: Saito, S.; Kobayashi, S. J. Am. Chem. Soc. 2006, 128,
8704; (c) b,g-Unsaturated ester: Yamaguchi, A.; Matsunaga, S.; Shibasaki, M. J.
Am. Chem. Soc. 2009, 131, 10842; (d) 5H-Oxazol-4-ones: Misaki, T.; Takimoto, G.;
Sugimura, T. J. Am. Chem. Soc. 2010, 132, 6286; (e) Direct catalytic asymmetric
aldol reaction of thiazolidinethiones where the use of stoichiometric amount of
silylating reagent was essential: Evans, D. A.; Downey, C. W.; Hubbs, J. L. J. Am.
Chem. Soc. 2003, 125, 8706.
6. (a) Iwata, M.; Yazaki, R.; Suzuki, Y.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc.
2009, 131, 18244; (b) Iwata, M.; Yazaki, R.; Kumagai, N.; Shibasaki, M. Tetrahe-
dron: Asymmetry 2010, 21, 1688; (c) Iwata, M.; Yazaki, R.; Chen, I.-H.; Sure-
shkumar, D.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2011, 133, 5554.
7. Recent reviews on cooperative catalysis, see: (a) Lewis acid/Brønsted base Ref. 3a.
(b) Matsunaga, S.; Shibasaki, M. Bull. Chem. Soc. Jpn. 2008, 81, 60; (c) Lewis acid/
Lewis base: Kanai, M.; Kato, N.; Ichikawa, E.; Shibasaki, M. Synlett 2005, 1491; (d)
Paull, D. H.; Abraham, C. J.; Scerba, M. T.; Alden-Danforth, E.; Lectka, T. Acc. Chem.
Res. 2008, 41, 655; (e) Lewis acid/Brønsted acid and Lewis acid/Lewis acid: Ya-
mamoto, H.; Futatsugi, K. Angew. Chem., Int. Ed. 2005, 44, 1924; (f) Yamamoto, H.;
Futatsugi, K. In Acid Catalysis in Modern Organic Synthesis; Yamamoto, H., Ishihara,
K., Eds.; Wiley-VCH: Weinheim, 2008; (g) Kumagai, N.; Shibasaki, M. Angew.
Chem., Int. Ed. 2011, 50, 4760; (h) Heterogeneous catalysis: Lee, J.-K.; Kung, M. C.;
Kung, H. H. Top. Catal. 2008, 49,136; (i) Metal-organic cooperative catalysis: Park,
Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222.
d
170.2, 98.6, 80.5, 67.4, 66.2, 42.6, 39.5, 38.4, 36.5, 30.1, 28.0, 19.7;
22
[a]
þ11.5 (c 0.28, CHCl3); ESI-MS m/z 274.2 [MþH]þ; HRMS (ESI)
D
Anal. Calcd forC14H28NO4 m/z 274.2013 [MþH]þ, found; 274.2015.
4.3.7. (3R,5R)-7-(2-(4-Fluorophenyl)-5-isopropyl-3-phenyl-4-(phe-
nylcarbamoyl)-1H-pyrrol-1-yl)-3,5-dihydroxyheptanoic acid (ator-
vastatin). A mixture of amine 15 (40.2 mg, 0.147 mmol), diketone 16
(55.8 mg, 0.133 mmol), pivalic acid (12.0 mg, 0.118 mmol) in n-
hexane/toluene/THF¼1:4:1 (0.48 mL) was heated at 110 ꢁC for 30 h
under Ar. After cooling to room temperature, the mixture was di-
luted with AcOEt and washed with satd NaHCO3 aq, then dried over
Na2SO4. The resulting residue afterevaporationwas dissolved inTHF
(0.5 mL). To the solution was added 2 N HCl in MeOH (1 mL) at 0 ꢁC
and the resulting solution was stirred at room temperature for
30 min. The mixture was diluted with CH2Cl2, and resulting biphasic
mixturewas separated. Organic layer was washed with satd NaHCO3
aq and brine, then dried over Na2SO4. The filtrate was concentrated
under reduced pressure and the resulting residue was dissolved in
wet THF (0.2 mL). 1 N NaOH aq (2 mL) was added at 0 ꢁC and the
resulting solution was stirred at room temperature for 6 h. The
mixture was diluted with CH2Cl2 and 1N HCl aq. The resulting bi-
phasic mixture was extracted with CH2Cl2. The combined organic
layers were washed with brine, then dried over Na2SO4. Volatiles
were removed under reduced pressure and the resulting solid res-
idue was purified by flash chromatography (CH2Cl2/MeOH 18/1) on
silica gel to give atorvastatin as a colorless solid. (54.8 mg, 67% over
8. Use of thioamide as pronucleophile in diastereoselective CeC bond-forming
reactions, see: (a) Tamaru, Y.; Harada, T.; Nishi, S.; Mizutani, M.; Hioki, T.;
Yoshida, Z. J. Am. Chem. Soc. 1980, 102, 7806; (b) Goasdoue, C.; Goasdoue, N.;
Gaudemar, M.; Mladenova, M. J. Organomet. Chem. 1981, 208, 279; (c) Goasdoue,
C.; Goasdoue, N.; Gaudemar, M. Tetrahedron Lett. 1983, 24, 4001; (d) Goasdoue,
C.; Goasdoue, N.; Gaudemar, M. J. Organomet. Chem. 1984, 263, 273.
9. Use of thioamide as pronucleophile in enantioselective CeC bond-forming
reactions, see: Iwasawa, N.; Yura, T.; Mukaiyama, T. Tetrahedron 1989, 45, 1197.
ꢀ
10. For the utility of thioamide functionality, see: Jagodzinski, T. S. Chem. Rev. 2003,
103, 197.
11. Use of thioamides in catalytic asymmetric reactions CeC bond-forming reactions,
see: (a) Suzuki, Y.; Yazaki, R.; Kumagai, N.; Shibasaki, M. Angew. Chem., Int. Ed.
2009, 48, 5026; (b) Yazaki, R.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2010,
132, 10275; (c) Yazaki, R.; Kumagai, N.; Shibasaki, M. Org. Lett. 2011, 13, 952; (d)
Yazaki, R.; Kumagai, N.; Shibasaki, M. Chem.dAsian J., in press. See also Ref. 6.
12. For the use of 2,2,5,7,8-pentamethylchroman unit as electron-donating group,
see: Ramage, R.; Green, J.; Blake, A. J. Tetrahedron 1991, 47, 6353 and references
cited therein.
13. Enhanced Lewis basicity of LiOPh was observed by using a bidentate phosphine
oxide in the Mukaiyama aldol reactions. X-ray crystallographic analysis con-
firmed the coordination of the bidentate phosphine oxide to an Li cation in
a bidentate fashion Hatano, M.; Takagi, E.; Ishihara, K. Org. Lett. 2007, 9, 4527.
14. A comprehensive review of Lewis base catalysis: (a) Denmark, S. E.; Beutner,
G. L. Angew. Chem., Int. Ed. 2008, 47, 1560 and references cited therein. Se-
lected examples for Lewis base activation of Brønsted base, see: (b) McGrath,
M. J.; O’Brien, P. J. Am. Chem. Soc. 2005, 127, 16378; (c) Saito, S.; Tsubogo, T.;
Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 5364; (d) Morimoto, H.; Yoshino, T.;
Yukawa, T.; Lu, G.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2008, 47,
9125.
15. (a) Roth, B. D.; Mich, A. A. U.S. Patent 4,681,893, 1987; (b) Roth, B. D.; Blankley,
C. J.; Chucholowski, A. W.; Ferguson, E.; Hoefle, M. L.; Ortwine, D. F.; Newton, R.
S.; Sekerke, C. S.; Sliskovic, D. R.; Stratton, C. D.; Wilson, M. W. J. Med. Chem.
1991, 34, 357; (c) Roth, B. D.; Mich, A. A. U.S. Patent 5,273,995, 1993.
16. (a) Brower, P. L.; Butler, D. E.; Deering, C. F.; Le, T. V.; Millar, A.; Nanninga, T. N.;
Palmer, C. W.; Roth, B. D. Tetrahedron Lett. 1992, 33, 2279; (b) Baumann, K. L.;
Butler, D. E.; Deering, C. F.; Mennen, K. E.; Millar, A.; Nanninga, T. N.; Palmer, C.
W.; Roth, B. D. Tetrahedron Lett. 1992, 33, 2283; (c) Wade, R. A.; Zennie, T. M.;
Briggs, C. A.; Jennings, R. A.; Nanninga, T. N.; Palmer, C. W.; Ronald, J. C. Org.
Process Res. Dev. 1997, 1, 320; (d) Butler D. E.; Dejong, R. L.; Nelson, J. D.;
Pamment, M. G.; Stuk, T. L. W. O. Patent 02/055519, 2002. (e) Moody, D. J.;
Wiffen, J. W. W. O. Patent 05/012246, 2005. (f) Srinath, S.; Mathew, J.; Ujire, S.;
Sridharan, M.; Sambasivam, G. W. O. Patent 02/057274, 2002. (g) Sattigeri, J. A.;
Salman, M.; Rawat, S.; Sethi, S. W. O. Patent 05/118536, 2005. (h) Lee, H. W.;
Kim, Y. M.; Yoo, C. L.; Kang, S. K.; Ahn, S. K. Biomol. Ther. 2008, 16, 28.
17. Other examples in which the catalytic system [Cu(CH3CN)4]PF6/chiral phos-
phine ligand/LiOAr is effective for catalytic asymmetric CeC bond forming re-
actions, see: (a) Yazaki, R.; Nitabaru, T.; Kumagai, N.; Shibasaki, M. J. Am. Chem.
Soc. 2008, 130, 14477; (b) Yazaki, R.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc.
2009, 131, 3195; (c) Yazaki, R.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2010,
132, 5522 See also Refs. 6 and 11.
three steps). Colorless solid; IR (KBr)
1529, 1508, 1438, 1315, 1241, 1226 cmꢀ1
7.30e7.29 (m, 2H), 7.25e7.20 (m, 4H), 7.15e7.13 (m, 2H), 7.11e7.02
n
3410, 2964, 2929, 1731, 1652,
;
1H NMR (CD3OD)
d
(m, 6H), 4.08 (ddd, J¼5.3, 7.8, 16.0 Hz 1H), 4.02e3.98 (m, 1H), 3.91
(ddd, J¼5.3, 7.6, 16.0 Hz, 1H), 3.69e3.63 (m, 1H), 3.40e3.34 (m, 1H),
2.41 (dd, J¼5.2,15.5 Hz,1H), 2.35 (dd, J¼7.6,15.5 Hz,1H),1.75e1.6 (m,
2H), 1.56e1.51 (m, 1H), 1.49 (d, J¼7.1 Hz, 3H), 1.48 (d, J¼7.1 Hz, 3H),
1.47e1.43 (m, 1H); 13C NMR (CD3OD)
d 175.9, 169.5, 163.8
(1JCF¼245.5 Hz), 139.9, 139.1, 139.1, 136.4, 134.7 (3JCF¼7.2 Hz), 131.0,
130.3 (4JCF¼2.9 Hz),129.6,128.9,126.9,125.2,123.3,121.5,118.1,116.3
(2JCF¼21.6 Hz), 68.6, 67.9, 44.2, 43.3, 42.2, 40.1, 27.7, 22.9, 22.8; 19F
NMR (CDCl3)
d
ꢀ113.8; [
a
]
D
23 þ5 (c 0.94, CH3OH); ESI-MS m/z 581.2
[MþNa]þ; HRMS (ESI) Anal. Calcd for C33FH35N2NaO5 m/z 581.2422
[MþNa]þ, found; 581.2421.
Acknowledgements
This work was financially supported by a Grant-in-Aid for Sci-
entific Research (S). N.K. thanks the Sumitomo Foundation for fi-
nancial support.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. General review of aldol reactions, see:Modern Aldol Reactions; Mahrwald, R.,
Ed.; Wiley-VCH: Weinheim, 2004.
2. Geary, L. M.; Hultin, P. G. Tetrahedron: Asymmetry 2009, 20, 131.
18. Synthesis, characterization and application of mesitylcopper, see: (a) Tsuda, T.;
Yazawa, T.; Watanabe, K.; Fujii, T.; Saegusa, T. J. Org. Chem. 1981, 46, 192; (b)