Journal of the American Chemical Society
COMMUNICATION
Scheme 3. Formation of Stereospecific Products in the
Reaction of Imine 1a with (S)-(Z)-6 via Outer- and
Inner-Sphere Attack Mechanisms
’ REFERENCES
(1) For reviews, see: (a) Pfaltz, A.; Lautens, M. In Comprehensive
Asymmetric Catalysis;Jacobsen,E.N., Pfaltz, A.,Yamamoto,H.,Eds.;Springer:
New York, 1999; Vol. 2, p 833. (b) Trost, B. M.; Crawley, M. L. Chem. Rev.
2003, 103, 2921. (c) Lu, Z.; Ma, S. M. Angew. Chem., Int. Ed. 2008, 47, 258.
(2) (a) You, S.-L.; Zhu, X.-Z.; Luo, Y.-M.; Hou, X.-L.; Dai, L.-X. J. Am.
Chem. Soc. 2001, 123, 7471. (b) Zheng, W.-H.; Sun, N.; Hou, X.-L. Org. Lett.
2005, 7, 5151. (c) Zheng, W.-H.; Zheng, B.-H.; Zhang, Y.; Hou, X.-L. J. Am.
Chem. Soc. 2007, 129, 7718. (d) Chen, J.-P.; Ding, C.-H.; Liu, W.; Hou,
X.-L.; Dai, L.-X. J. Am. Chem. Soc. 2010, 132, 15493.
(3) (a) Hayashi, T.; Kawatsura, M.; Uozumi, Y. Chem. Commun.
1997, 561. (b) Hayashi, T.; Kawatsura, M.; Uozumi, Y. J. Am. Chem. Soc.
1998, 120, 1681. (c) Prꢀet^ot, R.; Pfaltz, A. Angew. Chem., Int. Ed. 1998,
37, 323. (d) Hilgraf, R.; Pfaltz, A. Synlett 1999, 1814.
(4) (a) Trost, B. M.; Bunt, R. C.; Lemoine, R. C.; Calkins, T. L. J. Am.
Chem. Soc. 2000, 122, 5968. (b) Itami, K.; Koike, T.; Yoshida, J.-i. J. Am. Chem.
Soc. 2001, 123, 6957. (c) Krafft, M. E.; Sugiura, M.; Abboud, K. A. J. Am.
Chem. Soc. 2001, 123, 9174. (d) Cook, G. R.; Yu, H.; Sankaranarayanan, S.;
Shanker, P. S. J. Am. Chem. Soc. 2003, 125, 5115.
Scheme 4. Stereochemistry Study of the Reaction
(5) Waetzig, S. R.; Tunge, J. A. J. Am. Chem. Soc. 2007, 129, 4138.
(6) (a) Watson, I. D. G.; Styler, S. A.; Yudin, A. K. J. Am. Chem. Soc. 2004,
126, 5086. (b) Watson, I. D. G.; Yudin, A. K. J. Am. Chem. Soc. 2005, 127, 17516.
(c) Dubovyk, I.; Watson, I. D. G.; Yudin, A. K. J. Am. Chem. Soc. 2007,129, 14172.
(d) Johns, A. M.; Liu, Z.; Hartwig, J. F. Angew. Chem., Int. Ed. 2007, 46, 7259.
(7) For examples, see: (a) Trost, B. M.; Schroeder, G. M. J. Am. Chem.
Soc. 1999, 121, 6759. (b) Trost, B. M.; Schroeder, G. M. Chem.—Eur.
J. 2005, 11, 174. (c) Braun, M.; Laicher, F.; Meier, T. Angew. Chem., Int.
Ed.2000, 39, 3494. (d) Kazmaier, U. Curr. Org. Chem. 2003, 7, 317. (e)
Weiss, T. D.; Helmchen, G.; Kazmaier, U. Chem. Commun. 2002, 1270. (f)
Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044. (g) Burger,
E. C.; Tunge, J. A. Org. Lett. 2004, 6, 4113. (h) Trost, B. M.; Xu, J.
J. Am. Chem. Soc. 2005, 127, 2846. (i) Trost, B. M.; Xu, J. J. Am. Chem. Soc.
2005, 127, 17180. (j) Braun, M.; Meier, T. Angew. Chem., Int. Ed. 2006,
ꢀ
45, 6952. (k) Braun, M.; Meier, T. Synlett 2006, 661. (l)Bꢀelanger, E.; Cantin,
Li+ is used, the linear product is produced. A novel mechanism
involving a transmetalation and a Pd-mediated [3,30]-reductive
elimination has been proposed to rationalize the formation of the
branched product using Na+ or K+ as the counterion. The
mechanism is supported by DFT calculations and a stereochemistry
study of the reaction. This simple protocol for controlling the
regioselectivity in Pd-catalyzed allylic alkylation reactions should
have wide potential applications in organic synthesis.
K.; Messe, O.; Tremblay, M.; Paquin, J.-F. J. Am. Chem. Soc. 2007, 129, 1034.
(m) Trost, B. M.; Xu, J.; Reichle, M. J. Am. Chem. Soc. 2007, 129, 282. (n)
Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092.
(8) (a) Yan, X.-X.; Liang, C.-G.; Zhang, Y.; Hong, W.; Cao, B.-X.; Dai,
L.-X.; Hou, X.-L. Angew. Chem., Int. Ed. 2005, 44, 6544. (b) Zhang, K.; Peng,
Q.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2008, 47, 1741.
(9) Hiroi, K.; Abe, J.; Suya, K.; Sato, S.; Koyama, T. J. Org. Chem. 1994,
59, 203.
(10) Reutov, O. A.; Kurts, A. L. Russ. Chem. Rev. 1977, 46, 1040.
(11) (a) Mꢀendez, M.; Cuerva, J. M.; Gꢀomez-Bengoa, E.; Cꢀardenas, D. J.;
Echavarren, A. M. Chem.—Eur. J. 2002, 8, 3620. (b) Keith, J. A.; Behenna,
D. C.; Mohr, J. T.; Ma, S.; Marinescu, S. C.; Oxgaard, J.; Stoltz, B. M.; Goddard,
W. A., III. J. Am. Chem. Soc. 2007, 129, 11876. (c) Sherden, N. H.; Behenna,
D. C.; Virgil, S. C.; Stoltz, B. M. Angew. Chem., Int. Ed. 2009, 48, 6840. (d)
Luzung, M. R.; Lewis, C. A.; Baran, P. S. Angew. Chem., Int. Ed. 2009, 48, 7025.
(e) Zhang, P.; Brozek, L. A.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 10686.
(12) Geometries were fully optimized with the DFT method of B3LYP
using the 6-31G* basis set (the LAN2LDZ basis set for Pd) (BS1). Vibrational
frequency calculations were carried out at the same level to obtain free energy
corrections. The energies were further estimated using a larger 6-311+G** basis
set (BS2) by single point calculations. Solvent effect of THF was estimated by
the IEFPCM method. All presented values are relative free energies (kcal/mol)
based on the calculated BS2 energies with BS1 free energy corrections. For
full reference of Gaussian 03 and detailed calculation procedures, see the SI.
(13) We studied the transmetalation reactions in Scheme 2 using
different counteranions as well as other possible transmetalation processes.
The calculated equilibrium energies were similar to those with one PPh3
ligand and different counteranions (Clꢀ and OCO2Meꢀ) and solvents
(toluene and THF). For details, see section 6-1 in the SI.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures, ad-
b
ditional experimental and computational results, and crystal-
lographic data (CIF). This material is available free of charge via
’ AUTHOR INFORMATION
Corresponding Author
xlhou@sioc.ac.cn; chydwu@ust.hk
’ ACKNOWLEDGMENT
This paper is dedicated to Professor Christian Bruneau on the
occasion of his 60th birthday. This work was financially supported by
the Major Basic Research Development Program (2011CB808700),
the National Natural Science Foundation of China (20872161,
20821002, 21032007), CAS, the External Cooperation Program of
CAS (GJHZ200816), the Shanghai Committee of Science and
Technology, and the Croucher Foundation of Hong Kong. J.-P.C.
and Q.P. thank the Croucher Foundation for studentships. We also
thank Professor Huaping Mo for valuable discussions.
(14) The inner-sphere and outer-sphere attacks involving two PPh3
ligands were also explored through calculations. These possible TSs were less
stable than that with one PPh3 ligand. For details, see section 6-1 in the SI.
(15) (a) Braun, M.; Meier, T. Synlett 2005, 2968. (b) Braun, M.; Meier,
T.; Laicher, F.; Meletis, P.; Fidan, M. Adv. Synth. Catal. 2008, 350, 303.
14183
dx.doi.org/10.1021/ja2039503 |J. Am. Chem. Soc. 2011, 133, 14180–14183