under vacuum, to afford the respective heterogenized complexes
in almost quantitative yields.
2 (a) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S.
Beck, Nature, 1992, 359, 710–712; (b) J. S. Beck, J. C. Vartuli, W. J.
Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu,
D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L.
Schlenker, J. Am. Chem. Soc., 1992, 114, 10834–10843.
3 (a) D. M. Ford, E. E. Simanek and D. F. Shantz, Nanotechnology,
2005, 16, S458–S475; (b) C. D. Nunes, M. Pillinger, A. A. Valente, I. S.
Gonc¸alves, J. Rocha, P. Ferreira and F. E. Ku¨hn, Eur. J. Inorg. Chem.,
2002, 5, 1100–1107.
4 (a) A. Corma, C. del Pino, M. Iglesias and F. Sa´nchez, Chem. Commun.,
1991, 18, 1253–1255; (b) A. Corma, M. Iglesias, M. V. Mart´ın, J. Rubio
and F. Sa´nchez, Tetrahedron: Asymmetry, 1992, 3, 845–848; (c) A.
Corma, A. Fuerte, M. Iglesias and F. Sa´nchez, J. Mol. Catal. A: Chem.,
1996, 107, 225–234 and references therein; (d) M. J. Alco´n, A. Corma,
M. Iglesias and F. Sa´nchez, J. Mol. Catal. A: Chem., 2003, 194, 137–
152.
(R,R)-8Pd–MCM. Stable dark brown-reddish solid. Elemen-
tal analysis indicated 1.4 mass% Pd. Found C,5.4; H, 1.4; N,
0.73%. IR (KBr, cm-1): nC
,
1641 (s), 1575 (s), nSi–O 1085,
O
C
N, C
C
nPd–O 544 (vw). DFTR: lmax (nm) = 675, 619, 488, 363, 329, 287,
263, 231. 13C NMR (300 MHz, Solid): d 198.0 (CH3CO2-); 160.5
(N CH); 158.0 (C O); 140.4–121.0 (15C, 5CPh and 10CNph);
120.7 (CPh); 59.5 (-O-CH2-CH3); 59.0 (-CHpyrr); 51.3 (-CHpyrr); 44.0
(-CH2-); 43.00 (-CH2-); 34.6 (Ct-Bu); 28.0 (6C, 3 -CH3t-Bu, 2 -CH2pyrr
,
CH3CO2-); 23.6 (-CH2-); 16.0 (4C, 3 -O-CH2-CH3, -CH3pyrr); 13.3
(-CH3pyrr); 8.6 (-CH2-Si).
5 R. W. Alder, P. S. Bowman, W. R. S. Steele and D. R. Winterman,
Chem. Commun., 1968, 13, 723–724.
6 S. N. Gamage, R. H. Morris, S. J. Rettig, D. C. Thackeray, I. S. Thorburn
and B. R. J. James, J. Chem. Soc., Chem. Commun., 1987, 12(12), 894–
895.
7 R. P. Hughes, I. Kovacik, D. C. Lindner, J. M. Smith, S. Willemsen,
D. Zhang, I. A. Guzei and L. R. Arnold, Organometallics, 2001, 20,
3190–3197.
8 A. Di Saverio, F. Focante, I. Camurati, L. Resconi, T. Beringhelli, G.
D’Alfonso, D. Donghi, D. Maggioni, P. Mercandelli and A. Sironi,
Inorg. Chem., 2005, 44, 5030–5041.
(R,R)-8Rh–MCM. Stable dark green solid. Elemental analysis
indicated 1.4 mass% Rh. Found C, 5.1; H, 1.4; N, 0.6%. IR
(KBr, cm-1): nC 1638 (s), nC
1580; nSi–O 1085, nP-F 803
O
N, C
C
(vs). DFTR: lmax (nm) = 666, 561, 362, 331, 287, 255, 226. 13C
NMR (300 MHz, Solid): d 160.1 (N CH); 152.0 (C O); 140.4–
115.0 (16Carom, 6CPh and 10CNph); 80.0 (4C, 2-CH CHcod); 59.5
(-O-CH2-CH3); 53.00 (2C, 2-CHpyrr); 43.6 (2C, 2 -CH2-); 34.3
(Ct-Bu); 28.6 (9C, 4-CH2cod, 3-CH3t-Bu, 2-CH2pyrr); 21.5 (-O-CH2-CH3,
-CH2-); 15.6 (-CH3pyrr); 8.3 (2C, -CH3pyrr, -CH2-Si).
9 T. Yamasaki, N. Ozaki, Y. Saika, K. Ohta, K. Goboh, F. Nakamura,
M. Hashimoto and S. Okeya, Chem. Lett., 2004, 33, 928–929.
10 F. Terrier, J. C. Halle, M. J. Pouet and M. P. J. Simonnin, J. Org. Chem.,
1986, 51, 409–411.
Catalytic activity
11 M. A. Zirnstein and H. A. Staab, Angew. Chem., 1987, 99, 460–461;
M. A. Zirnstein and H. A. Staab, Angew. Chem., Int. Ed. Engl., 1987,
26, 460–461.
12 V. Raab, J. Kipke, R. M. Gschwind and J. Sundermeyer, Chem. Eur. J.,
2002, 8, 1682–1693.
13 (a) J. P. Mazaleyrat and K. Wright, Tetrahedron Lett., 2008, 49, 4537–
4541; (b) G. Brancatelli, D. Drommi, G. Femino, M. Saporita, G.
Bottari and F. Faraone, New J. Chem., 2010, 34, 2853–2860.
14 H. U. Wu¨stefeld, W. C. Kaska, F. Schu¨th, G. D. Stucky, X. Bu and B.
Krebs, Angew. Chem., 2001, 113, 3280–3282; H. U. Wu¨stefeld, W. C.
Kaska, F. Schu¨th, G. D. Stucky, X. Bu and B. Krebs, Angew. Chem.,
Int. Ed., 2001, 40, 3182–3184.
15 U. Wild, O. Hu¨bner, A. Maronna, M. Enders, E. Kaifer, H. Wadepohl
and H. J. Himmel, Eur. J. Inorg. Chem., 2008, 4440–4447.
16 S. U. Son, H. Y. Jang, I. S. Lee and Y. K. Chung, Organometallics, 1998,
17, 3236–3239.
Hydrogenation of alkenes. The catalytic properties, in the
hydrogenation of (E)-diethyl 2-benzylidenesuccinate and diethyl
itaconate, of rhodium and palladium complexes were examined
under conventional conditions for batch reactions in a reactor
◦
(Autoclave Engineers) of 100 mL capacity at 40 C temperature,
4 atm dihydrogen pressure and 1/100 or 1/1000 metal/substrate
molar ratio. The evolution of the hydrogenated reaction product
was monitored by gas chromatography.
Specifically: To a suspension of the catalyst, 8Rh-MCM (15 mg,
2.0 10-3 mmol of Rh) in ethanol (40 mL), was added a solution of
52.4 mg (0.2 mmol) of (E)-diethyl 2-benzylidene succinate and the
mixture stirred at 40 ◦C, 1000 rpm. The evolution of the reaction
was monitored by gas chromatography.
17 I. G. Jung, S. U. Son, K. H. Park, K. C. Chung, J. W. Lee and Y. K.
Chung, Organometallics, 2003, 22, 4715–4720.
Recycling experiments. At the end of the process the reaction
mixture was centrifuged, and the catalyst residue washed to
completely remove any remaining products and/or reactants. The
solid was used again and any change in the catalytic activity was
observed. In each of the four runs, up to 95% conversion was
reached after 220 min and ee (%) was maintained after 4 cycles.
18 (a) C. Gonza´lez-Arellano, A. Corma, M. Iglesias and F. Sa´nchez,
Adv. Synth. Catal., 2004, 346, 1316–1328; (b) C Gonza´lez-Arellano,
E. Gutie´rrez-Puebla, M. Iglesias and F. Sa´nchez, Eur. J. Inorg. Chem.,
2004, 9, 1955–1962.
19 (a) N. Debono, M. Iglesias and F. Sa´nchez, Adv. Synth. Catal., 2007,
349, 2470–2476; (b) C. del Pozo, N. Debono, A. Corma, M. Iglesias
and F. Sa´nchez, ChemSusChem, 2009, 2, 650–657.
20 N. J. Farrer, R. McDonald and J. S. McIndoe,, Dalton Trans., 2006, 38,
4570–4579.
Acknowledgements
21 R. W. Alder, M. R. Bryce, N. C. Goode, N. Miller and J. Owen, J. Chem.
Soc., Perkin Trans., 1981, 1, 2840–2847.
The authors thank the Direccio´n General de Investigacio´n
Cient´ıfica y Te´cnica of Spain (Project MAT2006-14274-C02-02),
and Consolider Ingenio 2010-MULTICAT. G.V. thanks MCIINN
for financial support.
22 H. A. Staab, C. Krieger, G. Hieber and K. Oberdorf, Angew. Chem.,
Int. Ed. Engl., 1997, 36, 1884–1884.
23 (a) A. F. Pozharskii, O. V. Ryabtsova, V. A. Ozeryanskii, A. V.
Degtyarev, O. N. Kazheva, G. G. Alexandrov and O. A. Dyachenko,
J. Org. Chem., 2003, 68, 10109–10122; (b) A. V. Degtyarev and A. F.
Pozharskii, Chem. Heterocycl. Compd., 2008, 44, 1138–1145; (c) V. A.
Ozeryanskii, D. A. Shevchuk, A. F. Pozharskii, O. N. Kazheva, A. N.
Chekhlov and O. A. Dyachenko, J. Mol. Struct., 2008, 892, 63–67.
24 J. P. H. Charmant, G. C. Lloyd-Jones, T. M. Peakman and R. L.
Woodward, Eur. J. Org. Chem., 1999, 10, 2501–2510.
Notes and references
1 (a) M. H. Valkenberg and W. F. Ho¨lderich, Catal. Rev., 2002, 44, 321–
374; (b) A. Taguchi and F. Schu¨th, Microporous Mesoporous Mater.,
2005, 77, 1–45; (c) D. De Vos, M. Dams, B. Sels and P. Jacobs,
Chem. Rev., 2002, 102, 3615–3640; (d) F. Hoffmann, M. Cornelius
and J. Morell, Angew. Chem., 2006, 118, 3290–3328; F. Hoffmann, M.
Cornelius, J. Morell and M. Froba, Angew. Chem., Int. Ed., 2006, 45,
3216–3251.
25 K. Nakamoto, in IR and Raman Spectra of Inorganic and Co-
ordination Compounds, 5th; ed., WILEY & SONS, New York,
1997.
26 D. D. Perrin, S. L. F. Armarego, D. R. Perrin, in Purification of
Laboratory Chemicals, PERGAMON PRESS, New York, 1980.
9600 | Dalton Trans., 2011, 40, 9589–9600
This journal is
The Royal Society of Chemistry 2011
©