enoate moiety to provide 23, followed by removal of the
Ts-group and cyclization. Hydrolysis of the silyl ether 25
proceeded without incident to provide alcohol 26, that was
elaborated to the natural product according to previously
described methods4,6 to provide 1. Our sample exhibited
identical spectroscopic data to that reported in previous
structural and synthetic studies in (ꢀ)-217 A (Scheme 8).
In conclusion, [3+3] annelation strategies offer a convenient
and stereoselective method for the synthesis of piperidines.
This method has successfully delivered alkaloid (ꢀ)-217 A.
We are grateful to AstraZeneca, sanofi-aventis and the
EPSRC for financial support.
Scheme 6 Reagents and conditions: (a) CH2I2, Et2Zn, toluene, 85%
(495 : 5 d.r.); (b) NBS (7 equiv), MeOH, 91%; (c) TBAF, THF, 99%;
(d) NBS (1 equiv), MeOH, 40% (50% borsm).
NIS has also been employed in heteroatom promoted
cyclopropane cleavage reactions. We proposed that the larger
iodonium ion may reduce the rate of the second halogenation
step and therefore set about exploring the haloetherification
under these conditions. To our delight, cyclopropane 17
underwent smooth ring opening to provide aminal 20.
Compound 20 proved to be extremely sensitive to decomposi-
tion on silica gel, or by warming above ambient temperature
so we decided to explore the subsequent steps on the crude
material. In the event, reduction of the iodide followed by
allylation with ketene acetal 21 provided the desired piperidine
intermediate 22 as a single diastereoisomer in good yield over
three steps (Scheme 7).
Notes and references
1 P. Jain, H. M. Garraffo, H. Yeh, T. F. Spande, J. W. Daly,
N. R. Andriamaharavo and M. Andriantsiferana, J. Nat. Prod.,
1996, 59, 1174.
2 J. P. Michael, Nat. Prod. Rep., 2004, 21, 625.
3 W. H. Pearson and H. Suga, J. Org. Chem., 1998, 63, 9910.
4 H. Huang, T. F. Spande and J. S. Panek, J. Am. Chem. Soc., 2003,
125, 626.
5 K. M. Maloney and R. L. Danheiser, Org. Lett., 2005, 7, 3115.
6 M. Fellah, M. Santarem, G. Lhommet and V. Mouries-Mansuy,
J. Org. Chem., 2010, 75, 7803.
7 (a) S. J. Hedley, W. J. Moran, A. H. G. P. Prenzel, D. A. Price and
J. P. A. Harrity, Synlett, 2001, 1596; (b) S. J. Hedley, W. J. Moran,
D. A. Price and J. P. A. Harrity, J. Org. Chem., 2003, 68, 4286;
(c) K. M. Goodenough, P. Raubo and J. P. A. Harrity, Org. Lett.,
2005, 7, 2993; (d) L. C. Pattenden, R. A. J. Wybrow, S. A. Smith
and J. P. A. Harrity, Org. Lett., 2006, 8, 3089.
8 For recent reviews of synthetic routes to piperidines see:
(a) P. R. Girling, T. Kiyoi and A. Whiting, Org. Biomol. Chem.,
2011, 9, 3105; (b) J. P. A. Harrity and O. Provoost, Org. Biomol.
Chem., 2005, 3, 1349; (c) M. G. P. Buffat, Tetrahedron, 2004,
60, 1701; (d) F.-X. Felpin and J. Lebreton, Eur. J. Org. Chem.,
2003, 3693; (e) P. M. Weintraub, J. S. Sabol, J. M. Kane and
D. R. Borcherding, Tetrahedron, 2003, 59, 2953; (f) S. Laschat and
T. Dickner, Synthesis, 2000, 1781.
With a stereoselective route to the key 2,3,6-trisubstituted
piperidine 22 in hand, we turned our attention to the elabora-
tion of this advanced intermediate towards the target
compound. Firstly, we successfully assembled the remaining
ring of the quinolizidine core by a two-step reduction of the
9 (a) W. J. Moran, K. M. Goodenough, P. Raubo and J. P. A.
Harrity, Org. Lett., 2003, 5, 3427; (b) K. M. Goodenough,
W. J. Moran, P. Raubo and J. P. A. Harrity, J. Org. Chem.,
2005, 70, 207; (c) O. Y. Provoost, S. J. Hedley, A. J. Hazelwood
and J. P. A. Harrity, Tetrahedron Lett., 2006, 47, 331;
(d) O. Y. Provoost, A. J. Hazelwood and J. P. A. Harrity, Beilstein
J. Org. Chem., 2007, 3, 8.
10 For an overview of alternative [3+3] annelations see:
(a) R. P. Hsung, A. V. Kurdyumov and N. Sydorenko, Eur. J.
Org. Chem., 2005, 23; (b) G. S. Buchanan, J. B. Feltenberger and
R. P. Hsung, Curr. Org. Synth., 2010, 7, 363.
Scheme 7 Reagents and conditions: (a) NIS, MeOH; (b) Bu3SnH,
AIBN, toluene; (c) 21, BF3ꢁOEt2, CH2Cl2, 59% over three steps.
11 B. M. Trost, Angew. Chem., Int. Ed. Engl., 1986, 25, 1.
12 The stereochemistry of compound 14 was not determined.
13 (a) L. C. Pattenden, H. Adams, S. A. Smith and J. P. A. Harrity,
Tetrahedron, 2008, 64, 2951; (b) D. Craig, R. McCague,
G. A. Potter and M. R. V. Williams, Synlett, 1998, 55.
14 P. N. M. Botman, F. J. Dommerholt, R. de Gelder, Q. B.
Broxterman, H. E. Schoemaker, F. P. J. T. Rutjes and R. Blaauw,
Org. Lett., 2004, 6, 4941.
15 (a) E. Wenkert and T. Hudlicky´ , J. Org. Chem., 1988, 53, 1953;
(b) M. D. Kaufman and P. A. Grieco, J. Org. Chem., 1994,
59, 7197; (c) A. Padwa, P. Rashatasakhan, A. D. Ozdemir and
J. Willis, J. Org. Chem., 2005, 70, 519.
16 L. Larquetoux, N. Ouhamou, A. Chiaroni and Y. Six, Eur. J. Org.
Chem., 2005, 4654.
17 (a) P. Bertinato, E. J. Sorensen, D. Meng and S. J. Danishefsky,
J. Org. Chem., 1996, 61, 8000; (b) C. V. Ramana, R. Murali and
M. Nagarajan, J. Org. Chem., 1997, 62, 7694; (c) E. Megia-
Fernandez, N. Gourlaouen, S. V. Ley and G. J. Rowlands, Synlett,
1998, 991.
Scheme 8 Reagents and conditions: (a) 10% Pd/C, H-Cubet, EtOAc,
93%; (b) LAH, THF, 100%; (c) Na, C10H10, DME, 79%; (d) PPh3, I2,
imidazole, CH2Cl2, 79%; (e) TBAF, THF, 100%.
c
9806 Chem. Commun., 2011, 47, 9804–9806
This journal is The Royal Society of Chemistry 2011