ORGANIC
LETTERS
2011
Vol. 13, No. 20
5456–5459
Double Arylation of Allyl Alcohol via a
One-Pot Heck ArylationÀIsomerizationÀ
Acylation Cascade
Paul Colbon,† Jiwu Ruan,† Mark Purdie,‡ Keith Mulholland,‡ and Jianliang Xiao*,†
Department of Chemistry, Liverpool Centre for Materials and Catalysis,
University of Liverpool, Liverpool, L69 7ZD, U.K., and AstraZeneca, Silk Road
Business Park, Macclesfield, SK10 2NA, U.K.
Received August 7, 2011
ABSTRACT
A one-pot, two-step catalytic protocol has been developed. A regioselective Heck coupling between aryl bromides and allyl alcohol leads to the
generation of arylated allyl alcohols that in situ isomerize to give aldehydes, which then undergo an acylation reaction with a second aryl bromide.
A variety of aryl bromides can be employed in both the initial Heck reaction and the acylation, providing easy access to a wide variety of
substituted dihydrochalcones.
The Heck reaction is one of the most widely used
methods for the construction of carbonÀcarbon bonds
in modern organic chemistry.1 Over the past few decades,
improved catalytic systems have been developed to
broaden its application, particularly toward electron-rich
olefins.2 In this context, our group recently disclosed a new
catalytic method that allows the direct acylation of aryl
halides with aliphatic aldehydes, which appears to occur
via a Heck-type mechanism (Scheme 1).3,4 In the presence
of molecular sieves, the aldehyde condenses with pyrroli-
dine to give an electron-rich enamine, which undergoes a
regioselective Heck coupling with aryl halides, most likely
via a cationic mechanism.5 During this work, some of the
aldehyde substratesweresynthesizedbya HeckarylationÀ
isomerization reaction of aryl halides withallylic alcohols.6
We envisioned that it might be possible to develop a single
palladium catalyst that is capable of generating aldehydes
from aryl halides and allyl alcohol and, in the same
reaction vessel, catalyzes the acylation of a second aryl
halide (Scheme 2). This would broaden the scope of
the acylation reaction beyond commercially available al-
dehydes, while circumventing the need for intermittent
isolation and purification. The products of this one-pot
† University of Liverpool.
‡ AstraZeneca.
(1) For recent reviews, see: (a) Ruan, J.; Xiao, J. Acc. Chem. Res.
2011, 44, 614. (b) Deagostino, A.; Prandi, C.; Tabasso, S.; Venturello, P.
Molecules 2010, 15, 2667. (c) The Mizoroki-Heck Reaction; Oestreich,
M., Ed.; Wiley: Chichester, U.K., 2009. (d) Nicolaou, K. C.; Bulger, P. G.;
Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442. (e) Douney, A. B.;
Overman, L. E. Chem. Rev. 2003, 103, 2945.
(2) (a) Ruan, J.; Iggo, J. A.; Berry, N. G.; Xiao, J. J. Am. Chem. Soc.
2011, 132, 16689. (b) Gøgsig, T. M.; Lindhardt, A. T.; Dekhane, M.;
Grouleff, L.; Skrydstrup, T. Chem.;Eur. J. 2009, 15, 5950. (c) McConville,
M.; Saidi, O.; Blacker, J.; Xiao, J. J. Org. Chem. 2009, 74, 2692.
(d) Hyder, Z.; Ruan, J.; Xiao, J. Chem.;Eur. J. 2008, 14, 5555. (e) Mo,
J.; Xu, L.; Xiao, J. J. Am. Chem. Soc. 2005, 127, 751. (f) Andappan,
M. M. S.; Nilsson, P.; Schenck, H. V.; Larhed, M. J. Org. Chem. 2005, 69,
5212. (g) Hansen, A. L.; Skrydstrup, T. Org. Lett. 2005, 7, 5585.
(h) Nilsson, P.; Larhed, M.; Hallberg, A. J. Am. Chem. Soc. 2001, 123, 8217.
(3) (a) Colbon, P.; Ruan, J.; Purdie, M.; Xiao, J. Org. Lett. 2010, 12,
3670. (b) Ruan, J.; Saidi, O.; Iggo, J. A.; Xiao, J. J. Am. Chem. Soc. 2008,
130, 10510.
(5) (a) Amatore, C.; Godin, B.; Jutand, A.; Lemaıtre, F. Organome-
tallics 2007, 26, 1757. (b) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995,
28, 2.
(6) For examples of Heck reaction with allylic alcohols, see: (a) Stone,
ꢀ
M. T. Org. Lett. 2011, 13, 2326. (b) Alacid, E.; Najera, C. Adv. Synth.
Catal. 2007, 349, 2572. (c) Muzart, J. Tetrahedron 2005, 61, 4179.
(d) Larock, R. C.; Leung, W.-Y.; Stolz-Dunn, S. Tetrahedron Lett.
1989, 30, 6629.
(4) (a) Adak, L.; Bhadra, S.; Ranu, B. C. Tetrahedron Lett. 2010, 51,
3811. (b) Zanardi, A.; Mata, J. A.; Peris, E. Organometallics 2009, 28,
1480.
(7) For an alternative catalytic synthesis of DHCs, see: Briot, A.;
Baehr, C.; Brouillard, R.; Wagner, A.; Mioskowski, C. J. Org. Chem.
2004, 69, 1374.
r
10.1021/ol202144z
Published on Web 09/20/2011
2011 American Chemical Society