ACS Combinatorial Science
RESEARCH ARTICLE
’ ASSOCIATED CONTENT
(15) Sharma, S. K.; Straub, C.; Zawel, L. Development of Peptido-
mimetics Targeting IAPs. Int. J. Pept. Res. Ther. 2006, 12, 21–32.
(16) Ndubaku, C.; Varfolomeev, E.; Wang, L.; Zobel, K.; Lau, K.;
Elliott, L. O.; Maurer, B.; Fedorova, A. V.; Dynek, J. N.; Koehler, M.;
Hymowitz, S. G.; Tsui, V.; Deshayes, K.; Fairbrother, W. J.; Flygare, J. A.;
Vucic, D. Antagonism of c-IAP and XIAP Proteins is Required for
Efficient Induction of Cell Death by Small-Molecule IAP Antagonists.
ACS Chem. Biol. 2009, 4, 557–566.
S
Supporting Information. Experimental procedures in-
b
cluding general methods, solution-phase and solid-phase synthetic
procedures and biological procedures. Analytical data for all building
blocks and compounds cleaved from the solid support. Fitted dose-
response curves. This material is available free of charge via the
(17) Chai, J.; Du, C.; Wu, J. W.; Kyin, S.; Wang, X.; Shi, Y. Structural
and Biochemical Basis of Apoptotic Activation by Smac/DIABLO.
Nature 2000, 406, 855–862.
’ AUTHOR INFORMATION
(18) Liu, Z.; Sun, C.; Olejniczak, E. T.; Meadows, R. P.; Betz, S. F.;
Oost, T.; Herrmann, J.; Wu, J. C.; Fesik, S. W. Structural Basis for
Binding of Smac/DIABLO to the XIAP BIR3 Domain. Nature 2000,
408, 1004–1008.
(19) Wu, G.; Chai, J.; Suber, T. L.; Wu, J.-W.; Du, C.; Wang, X.; Shi,
Y. Structural Basis of IAP Recognition by Smac/DIABLO. Nature 2000,
408, 1008–1012.
(20) MacKenzie, A.; LaCasse, E. Inhibition of IAP’s Protection by
Diablo/Smac: New Therapeutic Opportunities? Cell Death Differ. 2000,
7, 866–867.
(21) Arnt, C. R.; Kaufmann, S. H. The Saintly Side of Smac/
DIABLO: Giving Anticancer Drug-Induced Apoptosis a Boost. Cell
Death Differ. 2003, 10, 1118–1120.
Corresponding Author
*E-mail: ten@kemi.dtu.dk.
Funding Sources
The research leading to these results has received funding from
the European Union’s Seventh Framework Programme managed
research/rea ([FP7/2007-2013] [FP7/2007-2011]) under grant
agreement no. [232447]. The Technical University of Denmark,
Danish Council for Independent Research, Natural Sciences
(TEN), Carlsberg Foundation (STLQ), and Torkil Holm Foun-
dation are gratefully acknowledged for financial support.
(22) Chen, J.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Wang, S.
Design, Synthesis, and Characterization of New Embelin Derivatives as
Potent Inhibitors of X-Linked Inhibitor of Apoptosis Protein. Bioorg.
Med. Chem. Lett. 2006, 16, 5805–5808.
’ ACKNOWLEDGMENT
We are very thankful to Tina Gustafsson for technical assistance.
(23) Franklin, M. C.; Kadkhodayan, S.; Ackerly, H.; Alexandru, D.;
Distefano, M. D.; Elliott, L. O.; Flygare, J. A.; Mausisa, G.; Okawa, D. C.;
Ong, D.; Vucic, D.; Deshayes, K.; Fairbrother, W. J. Structure and
Function Analysis of Peptide Antagonists of Melanoma Inhibitor of
Apoptosis (ML-IAP). Biochemistry 2003, 42, 8223–8231.
(24) Hossbach, J.; Michalsky, E.; Henklein, P.; Jaeger, M.; Daniel,
P. T.; Preissner, R. Inhibiting the Inhibitors: Retro-Inverso Smac
Peptides. Peptides 2009, 30, 2374–2379.
(25) Huang, J.-W.; Zhang, Z.; Wu, B.; Cellitti, J. F.; Zhang, X.; Dahl,
R.; Shiau, C.-W.; Welsh, K.; Emdadi, A.; Stebbins, J. L.; Reed, J. C.;
Pellecchia, M. Fragment-Based Design of Small Molecule X-Linked
Inhibitor of Apoptosis Protein Inhibitors. J. Med. Chem. 2008,
51, 7111–7118.
(26) Kipp, R. A.; Case, M. A.; Wist, A. D.; Cresson, C. M.; Carrell,
M.; Griner, E.; Wiita, A.; Albiniak, P. A.; Chai, J.; Shi, Y.; Semmelhack,
M. F.; McLendon, G. L. Molecular Targeting of Inhibitor of Apoptosis
Proteins Based on Small Molecule Mimics of Natural Binding Partners.
Biochemistry 2002, 41, 7344–7349.
(27) Oost, T. K.; Sun, C.; Armstrong, R. C.; Al-Assaad, A.-S.; Betz,
S. F.; Deckwerth, T. L.; Ding, H.; Elmore, S. W.; Meadows, R. P.;
Olejniczak, E. T.; Oleksijew, A.; Oltersdorf, T.; Rosenberg, S. H.;
Shoemaker, A. R.; Tomaselli, K. J.; Zou, H.; Fesik, S. W. Discovery of
Potent Antagonists of the Antiapoptotic Protein XIAP for the Treat-
ment of Cancer. J. Med. Chem. 2004, 47, 4417–4426.
(28) Pinacho, C. F. R.; Feng, Y.; Zhu, X.; Welsh, K.; An, J.; Reed,
J. C.; Huang, Z. Design and Synthesis of a Simplified Inhibitor for XIAP-
BIR3 Domain. Bioorg. Med. Chem. Lett. 2009, 19, 6413–6418.
(29) Sun, H.; Nikolovska-Coleska, Z.; Yang, C.-Y.; Qian, D.; Lu, J.;
Qiu, S.; Bai, L.; Peng, Y.; Cai, Q.; Wang, S. Design of Small-Molecule Peptidic
and Nonpeptidic Smac Mimetics. Acc. Chem. Res. 2008, 41, 1264–1277.
(30) Cohen, F.; Alicke, B.; Elliott, L. O.; Flygare, J. A.; Goncharov,
T.; Keteltas, S. F.; Franklin, M. C.; Frankovitz, S.; Stephan, J.-P.; Tsui, V.;
Vucic, D.; Wong, H.; Fairbrother, W. J. Orally Bioavailable Antagonists
of Inhibitor of Apoptosis Proteins Based on an Azabicyclooctane
Scaffold. J. Med. Chem. 2009, 52, 1723–1730.
(31) Peng, Y.; Sun, H.; Nikolovska-Coleska, Z.; Qiu, S.; Yang, C.-Y.;
Lu, J.; Cai, Q.; Yi, H.; Kang, S.; Yang, D.; Wang, S. Potent, Orally
Bioavailable Diazabicyclic Small-Molecule Mimetics of Second
Mitochondria-Derived Activator of Caspases. J. Med. Chem. 2008, 51,
8158–8162.
’ REFERENCES
(1) Shi, Y. A Structural View of Mitochondria-Mediated Apoptosis.
Nat. Struct. Biol. 2001, 8, 394–401.
(2) Hunter, A. M.; LaCasse, E. C.; Korneluk, R. G. The Inhibitors of
Apoptosis (IAPs) as Cancer Targets. Apoptosis 2007, 12, 1543–1568.
(3) Schimmer, A. D.; Dalili, S. Targeting the IAP Family of Caspase
Inhibitors as an Emerging Therapeutic Strategy. Hematology Am. Soc.
Hematol. Educ. Program 2005, 215–219.
(4) Gyrd-Hansen, M.; Meier, P. IAPs: from Caspase Inhibitors to
Modulators of NF-kB, Inflammation and Cancer. Nat. Rev. Cancer 2010,
10, 561–574.
(5) LaCasse, E. C.; Baird, S.; Korneluk, R. G.; MacKenzie, A. E. The
Inhibitors of Apoptosis (IAPs) and their Emerging Role in Cancer.
Oncogene 1998, 17, 3247–3259.
(6) LaCasse, E. C.; Mahoney, D. J.; Cheung, H. H.; Plenchette, S.;
Baird, S.; Korneluk, R. G. IAP-Targeted Therapies for Cancer. Oncogene
2008, 27, 6252–6275.
(7) Vaux, D. L.; Silke, J. IAPs, RINGs and Ubiquitylation. Nat. Rev.
Mol. Cell Biol. 2005, 6, 287–297.
(8) Kashkar, H. X-Linked Inhibitor of Apoptosis: a Chemoresistance
Factor or a Hollow Promise. Clin. Cancer Res. 2010, 16, 4496–4502.
(9) Chen, D. J.; Huerta, S. Smac Mimetics as New Cancer Ther-
apeutics. Anti-Cancer Drugs 2009, 20, 646–658.
(10) Fulda, S. Inhibitor of Apoptosis (IAP) Proteins: Novel Insights
into the Cancer-Relevant Targets for Cell Death Induction. ACS Chem.
Biol. 2009, 4, 499–501.
(11) Wu, H.; Tschopp, J.; Lin, S.-C. Smac Mimetics and TNFα: a
Dangerous Liaison? Cell 2007, 131, 655–658.
(12) Du, C.; Fang, M.; Li, Y.; Li, L.; Wang, X. Smac, a Mitochondrial
Protein that Promotes Cytochrome c-Dependent Caspase Activation by
Eliminating IAP Inhibition. Cell 2000, 102, 33–42.
(13) Verhagen, A. M.; Ekert, P. G.; Pakusch, M.; Silke, J.; Connolly,
L. M.; Reid, G. E.; Moritz, R. L.; Simpson, R. J.; Vaux, D. L. Identification
of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding
to and Antagonizing IAP Proteins. Cell 2000, 102, 43–53.
(14) Flygare, J. A.; Fairbrother, W. J. Small-Molecule Pan-IAP
Antagonists: a Patent Review. Expert Opin. Ther. Pat. 2010, 20, 251–267.
674
dx.doi.org/10.1021/co200078u |ACS Comb. Sci. 2011, 13, 667–675