concentrated on the six-membered C-ring and three of
them are all-carbon quaternary centers. The complex mo-
lecular structure and intriguing bioactivities make zoantha-
mines exciting but challenging synthetic targets. Twenty
years after isolation of the first zoanthamine alkaloid (i.e.,
1) by the research groups of Rau and Faulkner,5 Miyashita
and co-workers completed the first synthesis of nor-
zoanthamine in 2004 and subsequently converted it to
zoanthamine and zoanthenol.6 A second synthesis of nor-
zoanathamine was reported by Kobayashi and co-workers
in 2009.7 These successes were preluded by preliminary
studies from these two research groups and others.8 Early
investigations by the groups of Williams and Kobayashi
showed that the topologically complex bis-hemiaminal
DEFG ring system can be formed spontaneously from
acyclic amino alcohols under acidic reaction conditions.9
This polycyclization process (i.e., 5to 2, Scheme 1) was later
adapted by both Miyashita and Kobayashi in their synth-
eses of norzoanthamine. The relative ease of formation of
the DEFG ring system highlights the challenge associated
with synthesizing the highly functionalized and stereoche-
mically complex ABC carbocyclic core. Indeed, many of
these early synthetic routes assembled the ABC carbocycle
by intramolecular DielsꢀAlder reactions and subsequent
functional group manipulations.6,7 Development of effi-
cient synthetic approaches to the ABC carbocyclic core has
been and continues to be the focus of synthetic studies that
aim at zoanthamine alkaloids.10
Scheme 1. Synthetic Design
With the exception that its extra C250 has to be later
removed to complete the formation of Me-25, this tetra-
cyclic compound is a faithful representation of the ABC
carbocyclic core of norzoanthamine. It was envisioned to be
the product of a transannular Michael reaction cascade of
macrocyclic lactone 8,11 which could be synthesized from
cyclohexenone 9 and R-iodoketone 10. Herein we report a
12-step synthetic approach to the carbocyclic core of nor-
zoanthamine (i.e., 6) based on this synthetic design.
Our synthesis commenced with the enantioselective pre-
paration of cyclohexenone 9in 5 steps from ethyl acetoacetate
(Scheme 2). A modification of Snider’s original procedure
wasusedtopreparethebis-allylβ-ketoester 11 by the one-pot
double allylation reaction.12 The trisubstituted enoate 12 was
obtained in 87% yield by treatment of 11 with triflic anhy-
dride in a biphasic aq LiOH-hexanes system to form a (Z)-
enol triflate intermediate,13 followed by Fe(acac)3-catalyzed
methylation with MeMgBr.14 Only the (E)-enoate was
We embarked on developing an efficient synthetic route
to norzoanthamine and its simplified analogs that would
enable further biomedical investigation of this potent anti-
osteoporotic compound. Our convergent synthetic design
involved coupling of the tetracyclic β-ketoester 6 and the
C1ꢀC8 fragment 7(or its equivalent) to form 5(Scheme 1).7
The tetracyclic β-ketoester 6 contains five contiguous
stereocenters including two all-carbon quaternary ones.
(5) Rao, C. B.; Anjaneyula, A. S. R.; Sarma, N. S.; Venkatateswarlu,
Y.; Rosser, R. M.; Faulkner, D. J.; Chen, M. H. M.; Clardy, J. J. Am.
Chem. Soc. 1984, 106, 7983–7984.
(6) (a) Miyashita, M.; Sasaki, M.; Hattori, I.; Sakai, M.; Tanino, K.
Science 2004, 35, 495–499. (b) Miyashita, M. Pure Appl. Chem. 2007, 79,
651–665. (c) Yoshimura, F.; Sasaki, M.; Hattori, I.; Komatsu, K.; Sakai,
M.; Tanino, K.; Miyashita, M. Chem.;Eur. J. 2009, 15, 6626–6644.
This synthetic route was also applied by the same research group to
synthesize zoanthamine and zoanthenol. For zoantheol, see:(d) Taka-
hashi, Y.; Yoshimura, F.; Tanino, K.; Miyashita, M. Angew. Chem., Int.
Ed. 2009, 48, 8905–8908. (e) Yoshimura, F.; Takahashi, Y.; Tanino, K.;
Miyashita, M. Chem. Asian J. 2011, 6, 922–931. For zoanthamine, see ref
6b and 6c.
(7) (a) Murata, Y.; Yamashita, D.; Kitahara, K.; Minasako, Y.;
Nakazaki, A.; Kobayashi, S. Angew. Chem., Int. Ed. 2009, 48, 1400–
1403. (b) Yamashita, D.; Murata, Y.; Hikage, N.; Takao, K.-i.; Nakazaki,
A.; Kobayashi, S. Angew. Chem., Int. Ed. 2009, 48, 1404–1406.
(8) See references cited in ref 1 for previous synthetic studies toward
zoanthamines.
(9) (a) Williams, D. R.; Cortez, G. S. Tetrahedron Lett. 1998, 39,
2675–2678. (b) Hikage, N.; Furukawa, H.; Takao, K.-i.; Kobayashi, S.
Tetrahedron Lett. 1998, 39, 6237–6240. (c) Hikage, N.; Furukawa, H.;
Takao, K.; Kobayashi, S. Tetrahedron Lett. 1998, 39, 6241–6244.
(10) For some recent reports, see: (a) Behenna, D. C.; Stockdill, J. L.;
Stoltz, B. M. Angew. Chem., Int. Ed. 2007, 46, 4077–4080. (b) Stockdill,
J. L.; Behenna, D. C.; McClory, A.; Stoltz, B. M. Tetrahedron 2009, 65,
6571–6575. (c) Sugano, N.; Koizumi, Y.; Hirai, G.; Oguri, H.; Kobayashi,
S.; Yamashita, S.; Hirama, M. Chem. Asian J. 2008, 3, 1549–1557. (d)
Nguyen, T. X.; Dakanali, M.; Trzoss, L.; Theodorakis, E. A. Org. Lett.
2011, 13, 3308–3311.
(11) (a) Ho, T. In Tandem Organic Reactions; Wiley & Sons: New
York, 1992; Chapter 3, pp 33ꢀ56. For examples of synthetic methods
based on the Michael reaction cascade, see: (b) Lee, R. A. Tetrahedron
Lett. 1973, 14, 3333–3336. (c) Wu, L.-Y.; Bencivenni, G.; Mancinelli,
M.; Mazzanti, A.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed.
2009, 48, 7196–7199. (d) Bencivenni, G.; Wu, L.-Y.; Mazzanti, A.;
Giannichi, B.; Pesciaioli, F.; Song, M.-P.; Bartoli, G.; Melchiorre, P.
Angew. Chem., Int. Ed. 2009, 48, 7200–7203. (e) Wei, Q.; Gong, L.-Z.
Org. Lett. 2010, 12, 1008–1011. (f) Hoashi, Y.; Yabuta, T.; Takemoto,
Y. Tetrahedron Lett. 2004, 45, 9185–9188. (g) He, P.; Liu, X.; Shi, J.; Lin,
L.; Feng, X. Org. Lett. 2011, 13, 936–939. For examples of the Michael
reaction cascade in natural product synthesis, see:(h) Lavallee, J.-F.;
Deslongchamps, P. Tetrahedron Lett. 1988, 29, 6033–6036. (i) Zhang,
H.; Reddy, M. S.; Phoenix, S.; Deslongchamps, P. Angew. Chem., Int.
Ed. 2008, 47, 1272–1275. (j) Reddy, M. S.; Zhang, H.; Phoenix, S.;
Deslongchamps, P. Chem. Asian J. 2009, 4, 725–741. (k) Ihara, M.;
Toyota, M.; Fukumoto, K.; Kametani, T. Tetrahedron Lett. 1985, 26,
1537–1540. (l) Ihara, M.; Suzuki, M.; Fukumoto, K.; Kametani, T.;
Kabuto, C. J. Am. Chem. Soc. 1988, 110, 1963–1964. (m) Kanoh, N.;
Sakanishi, K.; Iimori, E.; Nishimura, K.; Iwabuchi, Y. Org. Lett. 2011,
13, 2864–2867. (n) Scheerer, J. R.; Lawrence, J. F.; Wang, G. C.; Evans,
D. A. J. Am. Chem. Soc. 2007, 129, 8968–8969.
(12) See Supplementary Information. For the original procedure, see:
Dombroski, M. A.; Snider, B. B. Tetrahedron 1992, 48, 1417–1426.
Org. Lett., Vol. 13, No. 20, 2011
5697