ORGANIC
LETTERS
2011
Vol. 13, No. 20
5564–5567
Thiourea-Catalyzed Enantioselective
Iso-PictetÀSpengler Reactions
Yunmi Lee, Rebekka S. Klausen, and Eric N. Jacobsen*
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street,
Cambridge, Massachusetts 02138, United States
Received August 24, 2011
ABSTRACT
A one-pot condensation of isotryptamines and aldehydes that affords enantiomerically enriched 4-substituted tetrahydro-γ-carbolines is
reported. The reaction is induced by a chiral thiourea/benzoic acid dual catalyst system. Purification of the N-Boc-protected products by trituration
or crystallization provides the optically pure tetrahydro-γ-carboline derivatives in a scalable and highly practical procedure.
Natural and synthetic compounds containing the tetra-
hydro-β-carboline heterocyclic framework are endowed
with an extraordinary range of important biological activi-
ties.1 The closely related tetrahydro-γ-carboline framework
is unknown in natural product structures but holds con-
siderable potential as a template for drug discovery.2 In
contrast to the rich assortment of known synthetic routes
to chiral tetrahydro-β-carboline derivatives,3,4 few meth-
ods have been identified for the direct preparation of
optically enriched tetrahydro-γ-carbolines. Reported stra-
tegies to the latter class of compounds include classical
resolution,5 diastereoselective cyclization of chiral, sub-
stituted precursors,6 and Pd-catalyzed enantioselective
intramolecular allylic alkylation.7 We describe here a
straightforward and direct route to enantiomerically en-
riched 4-substituted tetrahydro-γ-carbolines through an
enantioselective, catalytic “iso-PictetÀSpengler reaction”,
the one-pot condensation/cyclization of 2-substituted
(1) (a) Introduction to Alkaloids: A Biogenetic Approach; Cordell,
G. A., Ed.; Wiley: New York, 1981. (b) Comprehensive Natural Products
Chemistry; Cane, D. E., Barton, D. H. R., Nakanishi, K., Meth-Cohn, O.,
Kelly, J. W., Eds.; Elsevier: New York, 1999. (c) Karolina, P. Curr. Opin.
Drug Discovery Dev. 2010, 13, 669–684.
(2) (a) Doody, R. S.; Gavrilova, S. I.; Sano, M.; Thomas, R. G.;
Aisen, P. S.; Bachurin, S. O.; Seely, L.; Hung, D. Lancet 2008, 372, 207–
215. (b) Bridoux, A.; Millet, R.; Pommery, J.; Pommery, N.; Henichart,
J.-P. Bioorg. Med. Chem. 2010, 18, 3910–3924. (c) Butler, K. V.; Kalin,
J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A. P. J. Am. Chem.
Soc. 2010, 132, 10842–10846. (d) Harbart, C. A.; Plattner, J. J.; Welch,
W. M. J. Med. Chem. 1980, 23, 635–643. (e) Gharbia-Abou, M.; Patel,
U. R.; Webb, M. B.; Moyer, J. A.; Andree, T. H.; Muth, E. A. J. Med.
Chem. 1987, 30, 1818–1823. (f) Khorana, N.; Smith, C.; Herrick-Davis,
K.; Purohit, A.; Teitler, M.; Grella, B.; Dukat, M.; Glennon, R. A. J. Med.
Chem. 2003, 46, 3930–3937. (g) Bachurin, S.; Bukatina, E.; Lermontova,
N.; Tkachenko, S.; Afanasiev, A.; Grigoriev, V.; Grigorieva, I.; Ivanov,
Y. U.; Sablin, S.; Zefirov, N. Ann. N.Y. Acad. Sci. 2001, 939, 425–435.
(3) For reviews of PictetÀSpengler reactions, see: (a) Cox, E. D.;
Cook, J. M. Chem. Rev. 1995, 95, 1797–1842. (b) Lorenz, M.; van Linn,
M. L.; Cook, J. M. Curr. Org. Synth. 2010, 7, 189–223. (c) Stockigt, J.;
Antonchick, A. P.; Wu, F.; Waldmann, H. Angew. Chem., Int. Ed. 2011,
50, 8538–8564. For reductive approaches to enantioenriched tetrahy-
dro-β-carbolines, see: (d) Itoh, T.; Yokoya, M.; Miyauchi, K.; Nagata,
K.; Ohsawa, A. Org. Lett. 2003, 5, 4301–4304. (e) Martin, S. F. Acc.
Chem. Res. 2002, 35, 895–904. (f) Li, C.; Xiao, J. J. Am. Chem. Soc. 2008,
130, 13208–13209. (g) Evanno, L.; Ormala, J.; Pihko, P. M. Chem.;Eur.
J. 2009, 15, 12963–12969. (h) Uematsu, N.; Fujii, A.; Hashiguchi, S.;
Ikariya, T.; Noyori., R. J. Am. Chem. Soc. 1996, 118, 4916–4917. (i)
Nugent, T. C.; El-Shazly, M. Adv. Synth. Catal. 2010, 352, 753–819.
(4) For catalytic enantioselective PictetÀSpengler reactions, see: (a)
Klausen, R. S.; Jacobsen, E. N. Org. Lett. 2009, 11, 887–890. (b)
Sewgobind, N. V.; Wanner, M. J.; Ingemann, S.; de Gelder, R.; van
Maarseveen, J. H.; Hiemstra, H. J. Org. Chem. 2008, 73, 6405–6408. (c)
Wanner, M. J.; vad der Haas, R. N. S.; de Cuba, K. R.; van Maarseveen,
J. H.; Hiemstra, H. Angew. Chem., Int. Ed. 2007, 46, 7485–7487. (d)
Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am.
Chem. Soc. 2007, 129, 13404–13405. (e) Seayad, J.; Seayad, A. M.; List,
B. J. Am. Chem. Soc. 2006, 128, 1086–1087. (f) Taylor, M. S.; Jacobsen,
E. N. J. Am. Chem. Soc. 2004, 126, 10558–10559.
(5) Vecchietti, V; Clarke, G. D.; Colle, R.; Giardina, G.; Petrone, G.;
Sbacchi, M. J. Med. Chem. 1991, 34, 2624–2633.
(6) Sheng, Y.-F.; Li, G.-Q.; Kang, Q.; Zhang, A.-J.; You, S.-L.
Chem.;Eur. J. 2009, 15, 3351–3354.
(7) Bandini, M.; Melloni, A.; Piccinelli, F.; Sinisi, R.; Tommasi, S.;
Umani-Ronchi, A. J. Am. Chem. Soc. 2006, 128, 1424–1425.
r
10.1021/ol202300t
Published on Web 09/15/2011
2011 American Chemical Society