The disks were pretreated using a standard sequence of
polishing with diamond paste (Buehler) of decreasing sizes
(3 to 0.25 mm) interspersed by washings with nanopure water
and finally vacuum drying. Bulk electrolyses were carried out
in a three-compartment ‘‘H-type’’ cell having reference, counter
and working compartments separated by two fine glass frits
and the working electrode was a basket shaped Pt gauze. The
10 D. White and N. J. Coville, Adv. Organomet. Chem., Academic
Press, New York, 1994, p. 95.
11 (a) I. A. Guzei and M. Wendt, Dalton Trans., 2006, 3991;
(b) I. A. Guzei and M. Wendt, Program Solid-G, UW-Madison,
WI, USA, 2004.
12 P. J. Fitzpatrick, Y. Le Page and I. S. Butler, Acta Crystallogr.,
Sect. B: Struct. Crystallogr. Cryst. Chem., 1981, 37, 1052.
13 K. Raptis, E. Dornberger, B. Kanellakopulos, B. Nuber and
M. L. Ziegler, J. Organomet. Chem., 1991, 408, 61.
reference electrode in all cases was a Ag/AgCl wire, but all
0/+
14 J. E. Joachim, C. Apostolidis, B. Kanellakopulos, R. Maier,
N. Marques, D. Meyer, J. Muller, A. Pires de Matos, B. Nuber,
¨
potentials have been recorded versus the FeCp2
redox
J. Rebizant and M. L. Ziegler, J. Organomet. Chem., 1993,
448, 119.
couple obtained by using FeCp2 as an internal standard.34
IR spectra at Vermont were obtained with an ATI-Mattson
Infinity Series FTIR interfaced to a personal computer
employing Winfirst software at a resolution of 4 cmꢀ1. In situ
spectroelectrochemistry was performed using a mid-IR fiber-
optic ‘‘dip’’ probe (Remspec, Inc) in conjunction with the
Mattson FTIR,35 and a standard H-type electrolysis cell under
15 Re complex: (a) D. Chong, A. Nafady, P. J. Costa, M. J. Calhorda
and W. E. Geiger, J. Am. Chem. Soc., 2005, 127, 15676;
(b) D. Chong, D. R. Laws, A. Nafady, P. J. Costa, A. L.
Rheingold, M. J. Calhorda and W. E. Geiger, J. Am. Chem.
Soc., 2008, 130, 2692.
16 A weighted average shift of +115 cmꢀ1 was observed for
[Cr(CO)3(Z6-C6H6)]0/+: (a) N. C. Ohrenberg, L. M. Paradee,
R. J. DeWitte III, D. Chong and W. E. Geiger, Organometallics,
2010, 29, 3179; (b) N. Camire, A. Nafady and W. E. Geiger, J. Am.
Chem. Soc., 2002, 124, 7260. The same shift was observed for
[Mn(CO)3(Z5-C5H5)]0/+ (see ref. 7).
1
argon. H NMR spectra were obtained with a Bruker ARX
500 MHz spectrometer, and ESR spectra were recorded using
a Bruker ESP 300E spectrometer.
17 It is tempting to interpret smaller carbonyl IR shifts in the
oxidations of half-sandwich carbonyl complexes with decreased
metal character of the HOMO. However, the breadth of this
correlation has not been established, and more systematic work
in this area would be welcome. Average nCO shifts of 107–115 cmꢀ1
have been reported for metal tricarbonyl and metal dicarbonyl
phosphine derivatives in which the apparent % metal in the
HOMO varies between 50% and 80–90%. In addition to ref. 7
and 16, see (a) M. P. Castellani, N. G. Connelly, R. D. Pike,
A. L. Rieger and P. H. Rieger, Organometallics, 1997, 16, 4369;
(b) R. D. Pike, A. L. Rieger and P. H. Rieger, J. Chem. Soc.,
Faraday Trans. 1, 1989, 85, 3913.
18 P. H. Rieger, Coord. Chem. Rev., 1994, 135–136, 203.
19 A first-order decomposition was assumed, with the follow-up rate
constantly being determined through the use of the working curve
found in R. S. Nicholson and I. Shain, Anal. Chem., 1965, 37, 179.
20 (a) D. R. Anton and R. H. Crabtree, Organometallics, 1983, 2, 621;
(b) C. A. Tolman, J. Am. Chem. Soc., 1970, 92, 2953.
Acknowledgements
We thank Dr D. Bruce Fulton for assistance with 15N NMR
measurements. This work was supported at Vermont by the
National Science Foundation (CHE-0808909) and at Iowa
State University by the U.S. Department of Energy, Office
of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences through the Ames Laboratory
(Contract No. DE-AC02-07CH11358). Aaron D. Sadow is an
Alfred P. Sloan Fellow.
References
1 (a) S. Trofimenko, Scorpionates—The Coordination Chemistry of
Polypyrazolylborate Ligands, Imperial College Press, London,
1999; (b) S. Trofimenko, Chem. Rev., 1993, 93, 943; (c) J. Smith,
Comments Inorg. Chem., 2008, 29, 189; (d) N. J. Beach,
A. E. Williamson and G. J. Spivak, J. Organomet. Chem., 2005,
690, 4640.
2 (a) W. D. Jones and F. J. Feher, J. Am. Chem. Soc., 1982,
104, 4240; (b) D. M. Tellers and R. D. Bergman, J. Am. Chem.
Soc., 2001, 123, 11508; (c) R. D. Bergman, T. R. Cundari,
T. B. Gunnoe, W. D. Harman, T. R. Klinckman, M. D. Temple
and M. D. White, Organometallics, 2003, 22, 2331; (d) S. Milione,
C. Cuomo and A. Grassi, Top. Catal., 2006, 40, 163.
3 (a) J. F. Dunne, J. Su, A. Ellern and A. D. Sadow, Organometallics,
2008, 27, 2399; (b) H.-A. Ho, J. F. Dunne, A. Ellern and A. D. Sadow,
Organometallics, 2010, 29, 4105; (c) B. Baird, A. V. Pawlikowski, J. Su,
J. W. Wiench, M. Pruski and A. D. Sadow, Inorg. Chem., 2008,
47, 10208.
21 (a) C. J. Pickett and D. Pletcher, J. Organomet. Chem., 1975,
102, 327; (b) J. Chatt, C. T. Kan, C. J. Leigh, C. J. Pickett and
D. R. Stanley, J. Chem. Soc., Dalton Trans., 1980, 2032.
22 (a) B. E. Bursten, J. Am. Chem. Soc., 1982, 104, 1299; (b) B. E.
Bursten and M. R. Green, Prog. Inorg. Chem., 1988, 36, 393.
23 A. J. L. Pombeiro, Eur. J. Inorg. Chem., 2007, 1473.
24 A. B. P. Lever, Inorg. Chem., 1990, 29, 1271.
25 The potential of Mn(ToP)(CO)3 was not measured.
26 S. Bolano, J. Bravo, J. Castro, M. M. Rodrıguez-Rocha,
´
M. F. C. Guedes da Silva, A. J. L. Pombeiro, L. Gonalvi and
M. Peruzzini, Eur. J. Inorg. Chem., 2007, 5523.
´
27 F. Barriere and W. E. Geiger, Acc. Chem. Res., 2010, 43, 1030.
28 In ranking the Re complexes, we note that the cation radicals of the
ReCp and ReCp* complexes are long-lived but in equilibrium with
the equivalent dimer dications (see ref. 15).
29 A. Nafady, P. J. Costa, M. J. Calhorda and W. E. Geiger, J. Am.
Chem. Soc., 2006, 128, 16587.
4 D. D. LeCloux and W. B. Tolman, J. Am. Chem. Soc., 1993,
115, 1153.
5 D. M. Tellers, S. J. Skoog, R. G. Bergman, B. T. Gunnoe and
D. W. Harman, Organometallics, 2000, 19, 2428.
´
6 F. Barriere and W. E. Geiger, Acc. Chem. Res., 2010, 43, 1030.
7 Mn complex: D. R. Laws, D. Chong, K. Nash, A. L. Rheingold
and W. E. Geiger, J. Am. Chem. Soc., 2008, 130, 9859.
8 B. Kovac, L. Klasinc, Z. Raza and V. Sunjic, J. Chem. Soc., Perkin
Trans. 2, 1999, 2455.
9 A. M. Tondreau, J. M. Darmon, B. M. Wile, S. K. Floyd,
E. Lobkobsky and P. J. Chirik, Organometallics, 2009, 28, 3928.
30 S. P. Schmidt, W. C. Trogler and F. Basolo, Inorg. Synth., 1985, 23, 41.
31 (a) S. J. Trofimenko, J. Am. Chem. Soc., 1967, 89, 3170;
(b) S. Trofimenko, J. Am. Chem. Soc., 1967, 89, 6288.
32 J. E. Joachim, C. Apostolidis, B. Kanellakopulos, R. Maier,
N. Marques, D. Meyer, J. Mueller, A. Pires de Matos and
B. Nuber, J. Organomet. Chem., 1993, 448, 119.
33 R. J. LeSuer, C. Buttolph and W. E. Geiger, Anal. Chem., 2004,
76, 6395.
34 (a) G. Gritzner and J. Kuta, Pure Appl. Chem., 1984, 56, 461;
(b) N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877.
35 M. J. Shaw and W. E. Geiger, Organometallics, 1996, 15, 13.
c
2178 New J. Chem., 2011, 35, 2169–2178
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011