Inorganic Chemistry
COMMUNICATION
Compound 4 was also characterized by single-crystal X-ray
crystallography (Figure 2). The phosphazene heterocycle 4
contains PꢀN bond lengths in the narrow range of 1.5617-
(6)ꢀ1.610(2) Å, while the exocyclic PꢀC interaction is sig-
nificantly shorter [P(1A)ꢀC(4) = 1.692(4) Å ave] than the
dative PꢀCIPr linkages within the heterocyclic adducts 1 and 2.
Furthermore, the short PꢀC distance in 4 is accompanied by the
substantial lengthening of the proximal P(1)ꢀCl(1) bond length
[2.088(2) Å ave] relative to the PꢀCl distance observed in
phenyl-substituted phosphazene [PhP(Cl)N(PCl2N)2] [2.021(2)
Å].16 These metrical parameters suggest that the IPrdCH sub-
stituent is strongly electron-releasing, thereby leading to a weaken-
ing of the adjacent PꢀCl interaction. Unfortunately, our attempts to
remove a chloride ion from 4 using the known halide abstractors
Ag[A] (A = O3SCF3ꢀ and SbF6ꢀ) led to inseparable product
mixtures in place of the desired cyclophosphazene cation
[(IPrdCH)PN(PCl2N)2]+ ([4]+).17
In summary, partial reductive dehalogenation of [Cl2PN]3 in
the presence of the carbene donor IPr affords the novel mixed
PIIIꢀPV heterocyclic adduct 1; this species was also reacted with
sulfur to give the sulfido adduct 2. A divergent reaction pathway
was observed between IPrdCH2 and [Cl2PN]3, leading to the
olefin-bound cyclophosphazene 4. Future work will focus on the
reduction of [Cl2PN]3 in the presence of less hindered NHC
coligands in order drive the system toward a fully dehalogenated
(PN)3 heterocycle. The ability to prepare metastable complexes
of (PN)3 should lead to the discovery of new binary PꢀN
materials upon controlled removal of the stabilizing ligands,3b,e
with potential applications in materials science envisioned.18
2009, 48, 5530. (g) Wang, Y.; Xie, Y.; Abraham, M. Y.; Gilliard, R. J., Jr.;
Wei, P.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H.
Organometallics 2010, 29, 4778.
(3) For selected references, see: (a) Sidiropoulos, A.; Jones, C.;
Stasch, A.; Klein, S.; Frenking, G. Angew. Chem., Int. Ed. 2009, 48, 9701.
(b) Filippou, A. C.; Chernov, O.; Stumpf, K. W.; Schnakenburg, G.
Angew. Chem., Int. Ed. 2010, 49, 3296. (c) Bonyhady, S. J.; Collis, D.;
Frenking, G.; Holzmann, N.; Jones, C.; Stasch, A. Nat. Chem. 2010,
2, 865. (d) Yao, S.; Xiong, Y.; Driess, M. Chem.—Eur. J. 2010, 1281. (e)
Ghadwal, R. S.; Roesky, H. W.; Pr€opper, K.; Dittrich, B.; Klein, S.;
Frenking, G. Angew. Chem., Int. Ed. 2011, 50, 5374. (f) Katir, N.;
Matioszek, D.; Ladeira, S.; Escudiꢀe, J.; Castel, A. Angew. Chem., Int. Ed.
2011, 50, 5352. (g) Abraham, M. Y.; Wang, Y.; Xie, Y.; Wei, P.; Schaefer,
H. F., III; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2011,
133, 8874.
(4) (a) Thimer, K. C.; Al-Rafia, S. M. I.; Ferguson, M. J.; McDonald,
R.; Rivard, E. Chem. Commun. 2009, 7119. (b) Al-Rafia, S. M. I.;
Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. J. Am. Chem.
Soc. 2011, 133, 777. (c) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.;
Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Commun. 2011, 6987.
(d) Inoue, S.; Driess, M. Angew. Chem., Int. Ed. 2011, 50, 5614.
(5) Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald, R.; Ferguson, M. J.;
Rivard, E. Angew. Chem., Int. Ed. 2011, 50, 8354.
(6) (a) Atkins, R. M.; Timms, P. L. Spectrochim. Acta 1977, 33A, 853.
(b) Ahlrichs, R.; B€ar, M.; Plitt, H. S.; Schn€ockel, H. Chem. Phys. Lett.
1989, 161, 179.
(7) Ziurys, L. M. Astrophys. J. 1987, 321, L81.
(8) (a) Arduengo, A. J., III; Calabrese, J. C.; Cowley, A. H.; Rasika
Dias, H. V.; Goerlich, J. R.; Marshall, W. J.; Riegel, B. Inorg. Chem. 1997,
36, 2515. (b) Ellis, B. D.; Dyker, C. A.; Decken, A.; Macdonald, C. L. B.
Chem. Commun. 2005, 1965.
(9) For related carbene chemistry involving phosphorus, see: (a)
Schmidpeter, A.; Lochschmidt, S.; Willhalm, A. Angew. Chem., Int. Ed.
Engl. 1983, 22, 545. (b) Arduengo, A. J., III; Carmalt, C. J.; Clyburne,
J. A. C.; Cowley, A. H.; Pyati, R. Chem. Commun. 1997, 981. (c) Kuhn,
N.; Fahl, J.; Bl€aser, D.; Boese, R. Z. Anorg. Allg. Chem. 1999, 625, 729. (d)
Burford, N.; Dyker, C. A.; Phillips, A. D.; Spinney, H. A.; Decken, A.;
McDonald, R.; Ragogna, P. J.; Rheingold, A. L. Inorg. Chem. 2004,
43, 7502. (e) Masuda, J. D.; Schoeller, W. W.; Donnadieu, B.; Bertrand,
G. Angew. Chem., Int. Ed. 2007, 46, 7052. (f) Back, O.; Donnadieu, B.;
Parameswaran, P.; Frenking, G.; Bertrand, G. Nat. Chem. 2010, 2, 369.
(g) Weigand, J. J.; Feldmann, K.-O.; Henne, F. D. J. Am. Chem. Soc. 2010,
132, 16321.
’ ASSOCIATED CONTENT
S
Supporting Information. Full synthetic procedures and
b
X-ray crystallographic information files in CIF format. This material
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: erivard@ualberta.ca.
(10) Kinjo, R.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed.
2010, 49, 5930.
(11) See the Supporting Information for full details.
’ ACKNOWLEDGMENT
(12) Bartlett, S. W.; Coles, S. J.; Davies, D. B.; Hursthouse, M. B.;
€
We thank the NSERC of Canada, the Canada Foundation for
Innovation, Alberta Innovates (New Faculty Award), and Suncor
Energy Inc. (Petro-Canada Young Innovator Award) for finan-
cial support of this work. S.M.I.A. also thanks Alberta Innovates
for a graduate scholarship.
Ibisoglu, H.; Kilic, A.; Shaw, R. A.; Un, I. Acta Crystallogr. 2006, B62, 321.
(13) Codding, P. W.; Kerr, K. A. Acta Crystallogr. 1978, B34, 3785.
(14) (a) Kuhn, N.; Bohnen, H.; Kreutzberg, J.; Bl€aser, D.; Boese, R.
J. Chem. Soc., Chem. Commun. 1993, 1136. (b) Dumrath, A.; Wu, X. F.;
Neumann, H.; Spannenberg, A.; Jackstell, R.; Beller, M. Angew. Chem.,
Int. Ed. 2010, 49, 8988.
(15) Attempts to directly isolate the intermediate salt depicted in
Scheme 2 via the 1:1 reaction of [Cl2PN]3 and IPrdCH2 yielded only 4
and unreacted [Cl2PN]3.
(16) Allcock, H. R.; Connolly, M. S.; Whittle, R. R. Organometallics
1983, 2, 1514.
(17) (a) Allcock, H. R. Chem. Rev. 1972, 72, 315. (b) Zhang, Y.;
Huynh, K.; Manners, I.; Reed, C. A. Chem. Commun. 2008, 494.
(18) Matsumoto, Y.; Hanajiri, T.; Sugano, T.; Le Tuyen, T. T.; Katoda,
T. Thin Solid Films 1995, 269, 4146.
’ REFERENCES
(1) (a) Arduengo, A. J., III; Rasika Dias, H. V.; Harlow, R. L.; Kline,
M. J. Am. Chem. Soc. 1992, 114, 5530. (b) Kuhn, N.; Al-Sheikh, A. Coord.
Chem. Rev. 2005, 249, 829. (c) Wang, Y.; Robinson, G. H. Inorg. Chem.
2011, DOI: 10.1021/ic200675u.
(2) (a) Kinjo, R.; Donnadieu, B.; Celik, M. A.; Frenking, G.;
Bertrand, G. Science 2011, 333, 610. (b) Wang, Y.; Xie, Y.; Wei, P.;
King, R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. Science
2008, 321, 1069. (c) Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.;
Stalke, D. Angew. Chem., Int. Ed. 2009, 48, 5683. (d) Filippou, A. C.;
Chernov, O.; Schnakenburg, G. Angew. Chem., Int. Ed. 2009, 48, 5687.
(e) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III; Schleyer,
P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2008, 130, 14970. (f) Back,
O.; Kuchenbeiser, G.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed.
10545
dx.doi.org/10.1021/ic201812a |Inorg. Chem. 2011, 50, 10543–10545