5038
A. Padmaja et al. / European Journal of Medicinal Chemistry 46 (2011) 5034e5038
[6] K. Taori, V.J. Paul, H. Luesch, J. Am. Chem. Soc. 130 (2008) 1806e1807.
[7] A.T. Fuller, Nature 175 (1955) 722.
[8] F. Sasse, H. Steinmetz, G. Hôfle, H. Reichenbach, J. Antibiot. 56 (2003)
520e525.
[9] S. Kehraus, G.M. Konig, A.D. Wright, J. Org. Chem. 67 (2002) 4989e4992.
[10] K. Gerth, N. Bedorf, G. Hofle, H. Irschik, H. Reichenbach, J. Antibiot. 49 (1996)
560e563.
of the reaction mixture was treated with 1 ml of Griess reagent (1%
sulfanilamide, 2% H3PO4 and 0.1% naphthylethylenediamine dihy-
drochloride). The absorbance of the chromatophore was measured at
546 nm. Butylated hydroxyl toluene was used as standard. Nitric
oxide scavenging activity was calculated by the following equation
[11] H. Umezawa, K. Maeda, T. Takeuchi, Y. Okami, J. Antibiot. 19 (1966) 200e209.
[12] B. Silakowski, H.U. Schairer, H. Ehret, B. Kunze, S. Weinig, G. Nordsiek,
P. Brandt, H. Blocker, G. Hofle, S. Beyer, R. Muller, J. Biol. Chem. 274 (1999)
37391e37399.
[13] H. Abe, T. Takaishi, T. Okuda, K. Aoe, T. Date, Tetrahedron Lett. 19 (1978)
2791e2794.
[14] M.F. Earle, R.I. Glazer, Cancer Res. 43 (1983) 133e137.
[15] D.N. Carney, G.S. Ahluwalia, H.N. Jayaram, D.A. Cooney, D.G. Johns, J. Clin.
Invest. 75 (1985) 175.
[16] G.J. Tricot, H.N. Jayaram, C.R. Nichols, K. Pennington, E. Lapis, G. Weber,
R. Hoffman, Cancer Res. 47 (1997) 4988e4991.
% of scavenging ¼ ½ðA control ꢀ A sampleÞ=A blankꢂ ꢃ 100
where A control is the absorbance of the control reaction (con-
taining all reagents except the test compound) and A sample is the
absorbance of the test compound. Tests were carried at in triplicate.
6.2.1.3. Hydrogen peroxide (H2O2) scavenging activity. The H2O2
scavenging ability of the test compound was determined according
to the method of Ruch et al. A solution of H2O2 (40 mM) was
[17] G. Weber, U.S. Pat. 5, 405 (1995) 837.
prepared in phosphate buffer (pH 7.4). 10, 25, 50, 75 &100
m
g/ml
[18] K.D. Shin, M.-Y. Lee, D.-S. Shin, S. Lee, K.-H. Son, S. Koh, Y.-K. Paik, B.-M. Kwon,
D.C. Han, J. Biol. Chem. 280 (2005) 41439e41448.
[19] F.A.K. Amer, M. Hammouda, A.A.S. El-Ahl, B.F. Abdel-Wahab, J. Chin. Chem.
Soc. 54 (2007) 1543e1552.
[20] A.O. Abdolhamid, A.H. El-Ghandour, A.A.M. El-Reedy, J. Chin. Chem. Soc. 55
(2008) 406e413.
[21] M. Sechi, L. Sannia, F. Carta, M. Palomba, R. Dallocchio, A. Dessi, M. Derudas,
Z. Zawahir, N. Neamati, Antivir. Chem. Chemother. 16 (2005) 41e61.
[22] S. Rapposelli, A. Lapucci, F. Minutolo, E. Orlandini, G. Ortore, M. Pinza,
A. Balsamo, Farmaco 59 (2004) 25e31.
concentrations of the test compounds in 3.4 ml phosphate buffer
were added to H2O2 solution (0.6 mL, 40 mM). The absorbance
value of the reaction mixture was recorded at 230 nm. The percent
of scavenging of H2O2 was calculated by the following equation
% of scavenging ¼ ½ðA control ꢀ A sampleÞ=A blankꢂ ꢃ 100
where A control is the absorbance of the control reaction (con-
taining all reagents except the test compound) and A sample is the
absorbance of the test compound. Tests were carried at in triplicate.
[23] B. Cottineau, P. Toto, C. Marot, A. Pipaud, J. Chenault, Bioorg. Med. Chem. Lett.
12 (2002) 2105e2108.
[24] P. Cali, L. Naerum, S. Mukhija, A. Hjelmencrantz, Bioorg. Med. Chem. Lett. 14
(2004) 5997e6000.
[25] S. Shinde, W. Jadhav, R. Pawar, S. Bhusare, J. Chin. Chem. Soc. 51 (2004) 775e778.
[26] F. Al-Omran, A.A. El-Khair, J. Heterocycl. Chem. 41 (2004) 327e333.
[27] T.D. Penning, J.J. Talley, S.R. Bertenshaw, J.S. Carter, P.W. Collins, S. Docter,
M.J. Graneto, L.F. Lee, J.W. Malecha, J.M. Miyashiro, R.S. Rogers, D.J. Rogier,
S.S. Yu, G.D. Anderson, E.G. Burton, J.N. Cogburn, S.A. Gregory, C.M. Koboldt,
W.E. Perkins, K. Seibert, A.W. Veenhuizen, Y.Y. Zhang, P.C. Isakson, J. Med.
Chem. 40 (1997) 1347e1365.
Acknowledgments
The authors are grateful to University Grants Commission (UGC),
New Delhi, for financial assistance under major research project.
[28] X. Deng, N.S. Mani, Org. Lett. 10 (2008) 1307e1310.
[29] A.R. Katritzky, M. Wang, S. Zhang, M.V. Voronkov, J. Org. Chem. 66 (2001)
6787e6791.
Appendix. Supplementary material
[30] J. Elguero, in: A.R. Katritzky, C.W. Rees, EF.V. Scriven (Eds.), Comprehensive
Heterocyclic Chemistry II, vol. 3, Pergamon, Oxford, 1996, pp. 1e75.
[31] X. Deng, N.S. Mani, Org. Lett. 8 (2006) 3505e3508.
[32] T. Ichiba, W.Y. Yoshida, P.J. Scheuer, T. Higa, D.G. Gravalos, J. Am. Chem. Soc.
113 (1991) 3173e3174.
[33] D. Bhaskar Reddy, M. Muralidhar Reddy, G.V. Subbaraju, Indian J. Chem. 34B
(1995) 816e822.
[34] M. Burits, F. Bucar, Phytother Res. 14 (2000) 323e328.
[35] M. Cuendet, K. Hostettmann, O. Potterat, Helv. Chim. Acta 80 (1997)
1144e1152.
Supplementary data associated with this article can be found, in
References
[1] A. Rivkin, Y.S. Cho, A.E. Gabarda, F. Yoshimura, S.J. Danishefsky, J. Nat. Prod. 67
(2004) 139e143.
[2] T. Ganesh, J.K. Schilling, R.K. Palakodety, R. Ravindra, N. Shanker, S. Bane,
D.G.I. Kingston, Tetrahedron 59 (2003) 9979e9984.
[3] P.V. Plazzi, F. Bordi, M. Mor, C. Silva, G. Morini, A. Caretta, E. Barocelli, T. Vitali,
Eur. J. Med. Chem. 30 (1995) 881e889.
[4] N. Bai, Y. Sha, Ge. Meng, Molecules 13 (2008) 943e947.
[5] D.J. Hu, S.F. Liu, T.H. Huang, H.Y. Tu, A.D. Zhang, Molecules 14 (2009)
1288e1303.
[36] L.C. Green, D.A. Wagner, J. Glogowski, P.L. Skipper, J.K.S.R. Wishnok, Anal.
Biochem. 126 (1982) 131e136.
[37] L. Marcocci, J.J. Maguire, M.T. Droy-Lefaix, L. Packer, Biochem. Biophys. Res.
Commun. 201 (1994) 748e755.
[38] R.J. Ruch, S.J. Cheng, J.E. Klaunig, Carcinogenesis 10 (1989) 1003e1008.