5850
J. C. Haber et al. / Tetrahedron Letters 52 (2011) 5847–5850
3. (a) Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421; (b)
Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123,
7727; (c) Mino, T.; Harada, Y.; Shindo, H.; Sakamoto, M.; Fujita, T. Synlett 2008,
614; (d) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400; (e) Lv,
X.; Bao, W. J. Org. Chem. 2007, 72, 3863; (f) Hosseinzadeh, R.; Tajbakhsh, M.;
Mohadjerani, M.; Ghorbani, E. Chin. J. Chem. 2008, 26, 2120; (g) Monnier, F.;
Tailefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954; (h) Surry, D. S.; Buchwald, S. L.
Chem. Sci. 2010, 1, 13.
4. (a) Hicks, J. D.; Hyde, A. M.; Cuezva, A. M.; Buchwald, S. L. J. Am. Chem. Soc. 2009,
131, 16720; (b) Fors, B. P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, S. L.
Tetrahedron 2009, 65, 6576; (c) Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2007,
129, 7734; (d) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101; (e) Dooleweerdt,
K.; Fors, B. P.; Buchwald, S. L. Org. Lett. 2010, 12, 2350; (f) Surry, D. S.; Buchwald,
S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.
5. Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 1211.
6. (a) Pintori, D. G.; Greaney, M. F. Org. Lett. 2010, 12, 168; (b) Liu, Z.; Larock, R. C. J.
Am. Chem. Soc. 2005, 127, 13112; (c) Jin, T.; Yamamoto, Y. Angew. Chem., Int. Ed.
2007, 46, 3323; (d) Liu, Z.; Larock, R. C. Angew. Chem., Int. Ed. 2007, 46, 2535; (e)
Liu, Z.; Larock, R. C. J. Org. Chem. 2007, 72, 223; (f) Zhao, J.; Larock, R. C. J. Org.
Chem. 2007, 72, 583; (g) Yoshida, H.; Kishida, T.; Watanabe, M.; Oshita, J. Chem.
Commun. 2008, 5963; (h) Tambar, U. K.; Stolz, B. M. J. Am. Chem. Soc. 2005, 127,
5340.
stituent from the in situ generated benzyne reacting center. It
should be pointed out that our attempts to extend this method to
additional substrates such as indolin-2-one were unsuccessful,
which we attributed to the complications of steric hindrance. We
also found that acetamide and benzamide failed to provide the cor-
responding N-aryl products using this method, which further sug-
gests that primary carboxamides are not sufficiently nucleophilic
enough to react with benzyne generated under these conditions.
The removal of the acetyl group from the nitrogen of N-aryl
acetanilide product 3b was also performed as proof of principle
for the utility of the protocol (Scheme 1). As expected, a diaryl-
amine product 4 was isolated in high yield, providing this unsym-
metrical diarylamine in a manner that should find its applicability
as a general method.
In summary, we developed an efficient, mild and transition-me-
tal-free method for the N-arylation of acetanilides that is tolerant
of a range of functional groups. This chemistry offers a convenient
and mild alternative method to metal-catalyzed protocols to afford
N-arylation products. Due to relative ease of removal of acetyl
group on nitrogen,11 this method should serve as a useful approach
to the preparation of many unsymmetrical diarylamines.12
7. (a) Liu, Z.; Larock, R. C. J. Org. Chem. 2006, 71, 3198; (b) Liu, Z.; Larock, R. C. Org.
Lett. 2003, 5, 4673.
8. For an intramolecular reaction between N-alkyl benzamides and substituted
benzynes to produce N-benzoylindolines, see: Gonzalez, C.; Perez, D.; Guitian,
E.; Catedo, L. J. Org. Chem. 1995, 60, 6318.
9. Typical procedure for the preparation of N,N-diphenylacetamide (3a):
A
mixture of 1a (34 mg, 0.250 mmol), 2a (149 mg, 0.500 mmol) and TBAT
(540 mg, 1.00 mmol) in toluene (3 mL) was stirred at 50 °C for 18 h. After this
time, the reaction mixture was cooled to ambient temperature and
concentrated under reduced pressure. The residue obtained was purified by
flash chromatography (silica, heptane to 2:3 ethyl acetate/heptane) to afford 3a
(45 mg, 85%) as an off-white solid: mp 73–75 °C; 1H NMR (300 MHz, DMSO-d6)
d 7.41–7.39 (m, 10H), 1.93 (s, 3H); 13C NMR (75 MHz, DMSO-d6) d 169.2, 143.2,
134.5, 129.2, 127.7, 23.3; ESI MS m/z 212 [M+H]+; HRMS ESI m/z [M+H]+ calcd
for C14H14NO: 212.1075; found: 202.1084.
Acknowledgments
Drs. R. Jason Herr and Keith D. Barnes are gratefully acknowl-
edged for helpful discussions and suggestions during the course
of this study.
References and notes
10. Kessar, S. V. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon Press: Oxford, England, 1991; Vol. 4, p 483.
11. Greene, T. W.; Wuts, P. G. M. Protecting Groups in Organic Synthesis, 3rd ed.;
John Wiley & Sons: New York, 1999. p 494.
12. (a) He, C.; Chen, C.; Cheng, J.; Liu, C.; Liu, W.; Lei, A. Angew. Chem., Int. Ed. 2008,
47, 6414; (b) Correa, A.; Carril, M.; Bolm, C. Chem. Eur. J. 2008, 14, 10919.
1. Negwer, M. Organic-Chemical, Drugs and their Synonyms: An International
Survey, 7th ed.; Akademie: Berlin, 1994.
2. (a) Goldberg, I. Chem. Ber. 1906, 39, 1691; (b) Kunz, K.; Scholz, U.; Ganzer, D.
Synlett 2003, 2428.