Langmuir
ARTICLE
be noted that PEG-b-PLKC is doubly hydrophilic and cannot
self-aggregate in the given concentration, as indicated by the DLS
results that the count rate of the PEG-b-PLKC solution is
approximately that of pure water.
(4) (a) Kimizuka, N.; Kawasaki, T.; Kunitake, T. J. Am. Chem. Soc.
1993, 115, 4387. (b) Kimizuka, N.; Kawasaki, T.; Hirata, K.; Kunitake, T.
J. Am. Chem. Soc. 1998, 120, 4094.
(5) Oda, R.; Huc, I.; Schmutz, M.; Candau, S. J.; MacKintosh, F. C.
Nature 1999, 399, 566.
Although DLS is a powerful technique to monitor the change of
self-assembled structures in solution, the ionized MG has a strong
absorption at 633 nm, which is a commonly used laser wavelength in
DLS, making DLS not appropriate for monitoring the structure
change of the polymeric superamphiphile during UV irradiation.
Thus fluorescence spectroscopy was selected to monitor the
structural change of the polymeric superamphiphile upon UV
irradiation. Nile red was chosen as the probe. Normally, the
emission of Nile red is red-shifted and quenched when the
environment becomes more polar. From the results shown in
Figure 4, it can be seen that the fluorescence emission of Nile red
shifts to the red by about 7 nm after 300 s of UV irradiation and the
intensity drops with increasing irradiation time. These results clearly
show that the polarity of the solution increased after UV irradiation.
In aqueous solution, the hydrophobic Nile red is usually incorpo-
rated in the hydrophobic part of the aggregates. Thus the results
indicate an environment with higher polarity has been obtained after
UV irradiation, which confirms the UV-induced disassembly of the
MGÀPEG-b-PLKC superamphiphile aggregates.
(6) (a) Wang, C.; Yin, S.; Xu, H.; Wang, Z.; Zhang, X. Angew. Chem.,
Int. Ed. 2008, 47, 9049. (b) Wang, C.; Guo, Y.; Wang, Y.; Xu, H.; Wang,
Z.; Zhang, X. Angew. Chem., Int. Ed. 2009, 48, 8962. (c) Wang, C.; Guo,
Y.; Wang, Y.; Xu, H.; Wang, Z.; Zhang, X. Chem. Commun. 2009, 5380.
(d) Liu, K.; Wang, C.; Li, Z.; Zhang, X. Angew. Chem., Int. Ed. 2011,
123, 5054. (e) Wang, C.; Guo, Y.; Wang, Z.; Zhang, X. Langmuir 2010,
26, 14509.
(7) (a) Bojinova, T.; Coppel, Y.; Viguerie, N. L.; Milius, A.; Lattes,
I. R.; Lattes, A. Langmuir 2003, 19, 5233. (b) Wang, Y.; Ma, N.; Wang,
Z.; Zhang, X. Angew. Chem., Int. Ed. 2007, 46, 2823. (c) Jeon, Y. J.;
Bharadwaj, P. K.; Choi, S. W.; Lee, J. W.; Kim, K. Angew. Chem., Int. Ed.
2002, 41, 4474.
(8) (a) Harada, A.; Kataoka, K. Macromolecules 1995, 28, 5294. (b)
Harada, A.; Kataoka, K. Science 1999, 283, 65. (c) Koide, A.; Kishimura,
A.; Osada, K.; Jang, W.-D.; Yamasaki, Y.; Kataoka, K. J. Am. Chem. Soc.
2006, 128, 5988. (d) Bronich, T. K.; Kabanov, A. V.; Kabanov, V. A.; Yu,
K.; Eisenberg, A. Macromolecules 1997, 30, 3519. (e) Kabanov, A. V.;
Bronich, T. K.; Kabanov, V. A.; Yu, K.; Eisenberg, A. J. Am. Chem. Soc.
1998, 120, 9941. (f) Bronich, T. K.; Popov, A. M.; Eisenberg, A.;
Kabanov, V. A.; Kabanov, A. V. Langmuir 2000, 16, 481.
(9) (a) Wang, Y.; Han, P.; Xu, H.; Wang, Z.; Zhang, X.; Kabanov,
A. V. Langmuir 2010, 26, 709. (b) Han, P.; Ma, N.; Ren, H.; Xu, H.; Li,
Z.; Wang, Z.; Zhang, X. Langmuir 2010, 26, 14414. (c) Wang, C.; Chen,
Q.; Wang, Z.; Zhang, X. Angew. Chem., Int. Ed. 2010, 49, 8612.
(10) (a) Uda, R. M.; Oue, M.; Kimura, K. Chem. Lett. 2004, 33, 586.
(b) Liu, H.; Xu, Y.; Li, F.; Yang, Y.; Wang, W.; Song, Y.; Liu, D. Angew.
Chem., Int. Ed. 2007, 46, 2515. (c) Jiang, Y.; Wang, Y.; Ma, N.; Wang, Z.;
Smet, M.; Zhang, X. Langmuir 2007, 23, 4029. (d) Chen, S.; Jiang, Y.;
Wang, Z.; Zhang, X.; Dai, L.; Smet, M. Langmuir 2008, 24, 9233. (e)
Jiang, Y.; Wan, P.; Smet, M.; Wang, Z.; Zhang, X. Adv. Mater. 2008,
20, 1972. (f) Jiang, Y.; Wan, P.; Xu, H.; Wang, Z.; Zhang, X.; Smet, M.
Langmuir 2009, 25, 10134. (g) Wang, C.; Chen, Q.; Wang, Y.; Xu, H.;
Wang, Z.; Zhang, X. Adv. Mater. 2010, 22, 2553.
’ CONCLUSION
In summary, we have fabricated a UV-sensitive polymeric
superamphiphile consisting of an anionic malachite green deri-
vative and a cationic block copolymer on the basis of electrostatic
interaction. The polymeric superamphiphile self-assembles into
sheetlike aggregates in aqueous solution and disassembles under
UV irradiation due to the increased solubility of MG. It is
anticipated that a similar concept can be extended to fabricate
stimuli-responsive polymeric superamphiphiles for controlled
self-assembly and disassembly.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail xi@mail.tsinghua.edu.cn.
’ ACKNOWLEDGMENT
This work was financially supported by the NSFC (50973051,
20974059), NSFC-DFG Joint Grant (TRR61), the Foundation
for Innovative Research Groups of the National Natural Science
Foundation of China (21121004), Tsinghua University Initiative
Scientific Research Program (2009THZ02230), National Basic
Research Program (2007CB808000), and the Bilateral Grant
BIL 09/08 between Belgium and China.
’ REFERENCES
(1) (a) Sierra, L.; Lopez, B.; Gil, H.; Guth, J.-L. Adv. Mater. 1999, 11, 307.
€
(b) Ruiz-Hitzky, E.; Letaief, S.; Prꢀevot, V. Adv. Mater. 2002, 14, 439. (c)
Zhang, Q.; Ariga, K.; Okabe, A.; Aida, T. J. Am. Chem. Soc. 2004, 126, 988.
(2) (a) Kabanov, A. V.; Kabanov, V. A. Adv. Drug Delivery Rev. 1998,
30, 49. (b) Allen, C.; Maysinger, D.; Eisenberg, A. Colloids Surf., B 1999,
16, 3. (c) Kwon, G. S.; Kataoka, K. Adv. Drug Delivery Rev. 1995, 16, 295.
(d) Rosler, A.; Vandermeulen, G. W. M.; Klok, H.-A. Adv. Drug Delivery
Rev. 2001, 53, 95.
(3) (a) Zhang, X.; Wang, C. Chem. Soc. Rev. 2011, 40, 94. (b) Wang,
C.; Wang, Z.; Zhang, X. Small 2011, 7, 1379. (c) Zhang, X.; Wang, C.;
Wang, Z. Sci. China Chem. 2011, 41, 216.
14111
dx.doi.org/10.1021/la203486q |Langmuir 2011, 27, 14108–14111